• Title/Summary/Keyword: 토양의 물리화학적 특성

Search Result 358, Processing Time 0.033 seconds

Redox Characteristic and Evolution of a Fragipan of Gangreung Series Commonly Developed in Coastal Terraces (해성단구지에서 발달된 강릉통의 이쇄경반층(Btx) 토양의 산화.환원적 특성에 관한 연구)

  • Zhang, Yong-Seon;Moon, Yong-Hee;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Park, Chan-Won;Yoon, Sung-Won
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.137-144
    • /
    • 2012
  • Soil pan typically presents the problems in soil water movement or in aeration which is not appropriate for a plant root growth, In this study physico-chemical characteristics of soils and micromorphological characteristic of clay accumulated zone were investigated to identify redox characteristic and evolution of a fragipan of Gangreung series commonly developed in coastal terraces. Gangreung series is classified as Aquic Fragiudalfs according to the USDA soil taxonomy. It is known that sedimentary ocean floor results in soil pan having parallel liner soil structure due to landscape evolution around 200 to 250 million years ago. it is considered that illite, kaolinite, and vermiculite are major clay minerals contained in a fragipan of Gangreung series. Mixed gray and reddish brown colored band around soil pores was found and would be the redoxmorphic features of fragipan. It is possibly due to accumulated illuvial clay and ferriargillans in soil pores and aggregates in reducing conditions eluding ferrous material. Therefore, mixed colored band around pores in soils of Gangreung series would be developed from the eluted ferrous materials which were accumulated in fragipan during the emerged land formation.

Engineered Clay Minerals for Future Industries: Food Packaging and Environmental Remediation (미래산업에 적용가능한 점토 화합물: 식품포장 및 환경개선)

  • Kim, Hyoung-Jun;Oh, Jae-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2016
  • Clays, which are abundant in nature and eco-friendly, have been utilized throughout human history due to their characteristic physicochemical properties. Recently, a variety of clays such as montmorillonite, kaolinite, sepiolite and layered double hydroxide with or without chemical modification have been extensively studied for potential application in industries. Clays that possess a large specific surface area, high aspect ratio, nanometer sized layer thickness and controllable surface charge could be utilized as polymer fillers after appropriate chemical modifications. These modified clays can improve mechanical and gas barrier properties of polymer materials but also provide sustained antibacterial activity to polymer films. Furthermore, engineered clays can be utilized as scavengers for chemical or biological pollutants in water or soil, because they have desirable adsorption properties and chemical specificity. In this review, we are going to introduce recent researches on engineered clays for potential applications in future industries such as food packaging and environmental remediation.

Comparison of Soil Characteristics and Carbon Storage between Urban and Natural Lands - Case of Chunchon - (도심지와 자연지간 토양 특성 및 탄소저장량 비교 - 춘천시를 대상으로 -)

  • Jo, Hyun-Kil;Han, Gab-Soo
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • This study compared soil characteristics and carbon storage between urban and natural lands in Chunchon. Soil pH was lower in natural lands (5.0) than in urban lands (6.6), and therefore exchangeable cation was a little lower in natural lands. Organic matter and cation exchange capacity were respectively, 1.4 and 1.7 times higher in natural lands than in urban lands, while available $P_2O_5$ was about 3.2 times higher in urban lands. Organic carbon storage in soils averaged $24.8{\pm}1.6$ (standard error) t/ha in urban lands and $31.6{\pm}1.6t/ha$ in natural lands, 1.3 times greater than in urban lands. Annual carbon accumulation in soils of natural lands was 1.3 t/ha/yr (litterfall minus decomposition). The carbon storage in Chunchon' s soils equaled about 31% of annual carbon emission (245,590 t/yr).

  • PDF

Evaluation Methods of Soil Resilience Related to Agricultural Environment (농업환경 분야에서 토양 리질리언스 분야별 평가 방법)

  • Kim, Min-Suk;Min, Hyun-Gi;Hyun, Seung-Hun;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.97-113
    • /
    • 2020
  • Soil is the foundation of human life and the basis for food security. Considering this it is prioritized in the UN's Sustainable Development Goals (SDG). Therefore, research on soil resilience in the agricultural environment is crucial for sound and sustainable soil management, especially in highly uncertain and unpredictable conditions. Soil resilience is defined in different ways by several researchers; however, its definition typically includes the concepts of recovery and resistance to stress. The physical, chemical, and biological characteristics of soils that are used to assess the soil resilience, i.e., the response of soil to various types of stress are summarized in this study. In addition, various statistical processing techniques and quantification methods are summarized considering the wide spatial and temporal scope of soil resilience research. Several soil resilience studies typically conduct the following five steps: (1) soil and site selection (2) stress (independent variable) setting (3) soil characteristics and indicator (dependent variable) setting (4) performing various spatiotemporal scale experiments (5) statistical analysis. The previous and present studies present a general introduction of soil resilience, based on which, further practical research considering domestic agricultural environment should be conducted. The extensive range of soil resilience measurements will require collaboration between researchers in various fields.

REE(rare earth element) contents for the Korean ginsengs from three different soils (3 토양에서 채취된 고려 인삼의 희토류 원소 함량)

  • Song, Suck-Hwan;Min, Ell-Sik;Chan, Song-Chae
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.357-381
    • /
    • 2008
  • REEs of ginsengs(2, 3, 4 years) from the granite, phyllite and shale areas, Keumsan, are analysed and compared with the their soils. In the weathered soils, high element contents are shown in the LREE of the granite and in the HREE of the phyllite. The granite dominantly show positive correlation relationships. In the field soils, the phyllite are high while the granite are low. Relationships of the contents and correlation relationships can be explained with mineral assemblages and contents within soils, and their solubilities. In the host rocks, high contents are found in the LREE of the granite and HREE of the phyllite. The rocks dominantly show positive relationships. In the ginseng, high contents are shown in the 2 year for the shale and granite, and the 4 year for the phyllite. Element pairs mainly show positive relationships. Comparing of the same ages, the granite are mainly high. In the ratios between the soils and the ginsengs, differences of the several hundred to ten times are found, but dominantly, of the several hundred times in the shale and phyllite, and of the several ten times in the granite. The differences are big in the 3 year, and small in all REE of the 2 year from the shale and granite. while, in the phyllite, big in the LREE of the 2 year and HREE of the 3 year. Based on the absorption of the leachate by the ginsengs within soils, contents and correlation relationships of the ginsengs from the different soils can be explained with mineral assemblages, solubilities of the constitutional minerals and phyio-chemical affects influenced on the solubility. Of the three different soils, the ginsengs of the granites are chemically more similar to their soils.

A Semi-Automatic Rapid System for In-Field Soil Phosphorus Measurement (현장 토양의 인 분석을 위한 반자동 신속 측정 시스템)

  • Lee, Sang-Yoon;Park, Hyo-Je;Han, Cheol-Woo;Lee, Seung-Yun;Kweon, Giyoung
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.120-120
    • /
    • 2017
  • 최근 국내 소비자들의 안전한 음식과 환경문제에 대한 관심이 높아지면서 재배작물과 경작지 토양의 물리 화학적 특성 등에 맞추어 적정 시비 및 재배관리를 적용하는 정밀농업이 시도되고 있다. 정밀농업은 농약 및 비료 등의 양을 적절하게 사용하여 생산 비용을 절감할 수 있으며, 과다사용을 막아 환경오염을 줄일 수 있다. 현재 토양의 수분, EC, pH등과 같은 항목은 신속하고 간단하게 분석이 가능하지만 토양의 필수 원소인 N, P, K 성분을 분석하는 제품은 상용화 되지 않았거나 가격이 비싸 일반 농가에서는 사용이 어렵다. 특히, 토양의 인을 현장에서 분석하기 위한 연구가 많이 수행되고 있으나 실제로 현장에서 사용되는 경우 또한 없는 상황이다. 일반적으로 토양에 포함되어 있는 인을 측정하기 위해서 많은 실험실에서는 이화학적 분석법을 사용하고 있다. 하지만 이 분석법은 오랜 시간과 전문적인 인력이 필요하며 주변 환경변화에 민감하여 실시간으로 분석하기에는 어렵다고 한다. 따라서 본 연구에서는 현장에서 실시간으로 토양의 인을 분석하기 위해 반자동 분석시스템을 제작하고 이를 검증하고자 하였다. 이전 연구에서 현장 토양을 이용한 신속측정법의 가능성($R^2>0.7$)을 확인하여 이 분석법을 바탕으로 반자동 분석시스템을 제작하였고 표준결과 값의 약 70% 이상의 수준을 목표로 하였다. 진주 지역의 현장 토양 20개 샘플과 반자동 침출 장치, 여과 장치, 발색 장치 그리고 통합 반자동 시스템을 이용하여 분석한 후 표준 분석 결과와 비교하였을 때 $R^2$ 값이 각각 0.985, 0.817, 0.893, 0.837로 약 70% 이상의 수준을 달성하였다. 추후, 반자동 토양 인 신속측정시스템을 완전 자동화 시스템으로 개발하고 주행 장치를 부착시켜 현장에서 실시간으로 원하는 위치의 인을 측정 할 수 있을 것으로 판단된다.

  • PDF

Comparison of Soil Physico-chemical and Microbial Characteristics in Soil of 'Niitaka' Pear Orchards between Organic and Conventional Cultivations (유기농법과 관행농법에 의해 재배한 '신고'배 과원 토양의 물리화학적 및 미생물학적 특성 비교)

  • Choi, Hyun-Sug;Li, Xiong;Kim, Wol-Soo;Lee, Youn;Jee, Hyeong-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.229-243
    • /
    • 2011
  • Consumers' interest and government's support for the fruits rapidly increased organic fruit productions. This study was examined to compare the soil physicochemical and microbial properties of orchards soil in conventionally and organically management systems. Organic cultivation had lower soil bulk density, solid phase, and penetration resistance than the conventional cultivation. Soil pH and organic matter contents increased from March to August, and the values were greater in the organic cultivation than the conventional cultivation. Total nitrogen (N) and phosphorous concentrations decreased from March to August, and the organic soils had greater N but lower phosphorous concentrations than the conventional soils. Soil microbial carbon biomass increased 36% and 15% for organic and conventional cultivations, respectively, from March to August. Soil microbial N biomass was greater in June than March or August, and the organic cultivation had a greater biomass N compared to the conventional cultivation. Soil dehydrogenase and chitinase activities were greater in June than in March or August. ${\beta}$-glucosidase activity declined in both cultivations, while the phosphatase activity increased. Organic cultivation had greater enzyme activities in March, June, and August, except for the acid phosphatase activity in June.

Influence of the Number of Sulfur Applications on the Improvement of the Chemical Composition and Quality of Onions (재배 중 황 처리 횟수가 양파의 화학적 조성 개선 및 품질 특성에 미치는 영향)

  • Choi, Bogyoung;Surh, Jeonghee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.478-487
    • /
    • 2013
  • Onions were treated with different amounts of sulfur (S) during cultivation and examined for their physicochemical properties and flavor. Onions cultivated without S application were the control group; the treatment groups were grown in soil that had been pretreated with S and received additional S applications or four times before harvest. As the number of S applications increased, the levels of crude protein, quantified with total nitrogen; ash, approximating total amounts of minerals; and dietary fiber of the onions tended to increase. The mineral compositions also improved, with noticeable increases in the levels of Mg, K, Fe, and Zn. In particular, the reducing capacity of the onions increased appreciably (p<0.05), without increases in the levels of S-containing compounds such as thiosulfinate or S-containing amino acids. Nevertheless, the spicy hot taste and flavor, which is generated mainly from S-containing compounds, were perceived more strongly in the onions that had received more S applications.

Physico-Chemical Properties on the Management Groups of Paddy Soils in Korea (우리나라 논토양(土壤) 유형별(類型別) 이화학적(理化學的) 특성(特性))

  • Hur, Bong-Koo;Rim, Sang-Kyu;Kim, Yoo-Hak;Lee, Ke-Yup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.62-66
    • /
    • 1997
  • This study was designed to obtain the mean values of thirteen soil physico-chemical properties for different paddy soil management groups, and to serve the basic information for improving the soil using amendments. Computerized data on the results of detailed soil survey were used in this study. The clay contents in the B horizon of paddy soil management groups were 28.3% in the well adapted type, 11.8% in the sandy textured type, and 26.8% in the newly reclaimed type. Soil pH of B horizon in the paddy soil management groups except poorly drained type and acid sulfate type were higher than those of A horizon. In the river side paddy soils of well adapted type, the clay contents of A and B horizons were 16.8%, 23.1%, respectively, and soil organic matter contents of those horizons were 42g/kg, 18g/kg, respectively. And also available phosphate content of well adapted type was higher than the other types. Frequency of distribution of soil organic matter content levels in the B horizons of sandy textured type and newly reclaimed type were higher in the organic matter content range of below 10g/kg. And those of well adapted, poorly drained, and saline type were higher in the organic matter content range of 10~20g/kg. Correlation coefficients between 13 variables in the B horizon of well adapted type were all highly significant at 1% or 5% level, respectively.

  • PDF

Effect of Substrate on the Production of Korean Ginseng(Panax ginseng C.A. Meyer) in Nutrient Culture (한국인삼 양액재배시 배지의 영향)

  • Dong Sik Yang;Gung Pyo Lee;Park, Kuen Woo
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.199-204
    • /
    • 2002
  • To overcome a decrease of Korean ginseng production caused by successive cropping, we have tried to develop a nutrient culture system for Korean ginseng production. For determining the optimal substrate, mixture of sand and TKS-2 (S+T), peatmoss (P), reused rockwool (RR), and granular rockwool (GR) were investigated. The overall physico-chemical properties of RR fell into the reported optimal range for the ginseng cultivation. However, bulk density of S+T was a little higher than that of soil in Korean ginseng fields. The top fresh weight of the ginseng was high in RR and S+T substrates. The root fresh and dry weights in the RR were remarkably greater than that in the conventional soil (CS) of Korean ginseng fields. In terms of ginseng quality, the vitamin C content of ginseng root in nutrient culture was higher than that in CS. However, the contents of crude saponin and total ginsenosides in ginseng between in the nutrient culture and in the soil culture did not show any significant differences.