• Title/Summary/Keyword: 토양유기물

Search Result 1,700, Processing Time 0.037 seconds

상이한 삼림생태계에서의 토층분화 특성과 변화에 따른 수분 이동 특성

  • 정덕영;오종민;진연호;손요한;주영특
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.06a
    • /
    • pp.69-73
    • /
    • 1998
  • 경기도 퇴촌에 위치한 경희대학교 연습림내의 경사도와 수종을 달리하는 3개의 서로 다른 임반에서 등고선을 따라 지표면의 토층분화를 조사하였고 이에 따른 수분침투특성을 조사하였다. 3개의 임반은 낙엽송, 잣나무 및 굴참나무의 천연활엽수로 구성되었고 이에 구성 수종에 따라 지표면에 퇴적되는 O, A, B층의 깊이를 달리한다. 토층분화 길이는 3개 임반 모두 경사도가 낮은 하부사면에서 양호하게 발달하였으며 경사도가 높은 산사면이나 수간우가 많은 일부 지역에서는 유거수에 의해 유기물이나 표층토가 유실되어 바로 암반층 또는 풍화층이 나타나는 경향을 보이고 있다. 그러나 잣나무 임반의 경우 밀식 수간에 의해 유기물퇴적층과 A층의 발달이 다른 낙엽송이나 굴참나무 임반보다 토층 발달 깊이가 약 2배 이상으로 깊게 발달되었다. 그리고 조사된 임반의 하부사면의 경우 A층의 발달이 약 35cm부터 약 60cm에 이르고 있으나 토성을 구성하는 요소 중 직경 2mm 이상의 자갈에 토양입자들이 전체 토양의 40%정도를 차지하고 있다. 이러한 토층분화 특성을 달리하는 임반에서의 수분 이동특성은 퇴적된 유기물의 두께가 깊으면 깊을수록 수분침투율은 낮아지는 반면 포면 유거수량은 증가하는 경향을 보여주고 있다. 그리고 지표면, 유기물 퇴적층 아래, 지표면으로부터 30cm 아래에 설치된 Lysimeter를 이용하여 조사된 침출수의 분포는 전체를 100으로 환산시 지표면은 약 55%, 유기물퇴적층 아래는 30%, 그라고 30cm의 위치에서는 나머지 15%정도의 침출수가 포집되었다. 따라서 본 실험의 결과를 살펴보았을 때 지표 층에 존재하는 유기물이 전체 수분이동에 영향을 미치는 것으로 조사되었다.양 실험 결과, 서식지에서 조사된 결과인 잎과 줄기에서 Pb$\alpha$ 추정시에는 SeaWiFS 위성과 관련된 global algorithms 중에서 490nm와 555nm의 복합밴드를 포함하는 OC2 알고리즘(ocean color chlorophyll 2 algorithm)을 사용하는 것이 OC2 series 및 OC4 알고리즘보다 좋은 추정 값을 도출할 수 있을 것으로 기대된다.환경에서는 5일에서 7월에 주로 이 충체의 유충이 발육되고 전파되는 것으로 추측되었다.러 가지 방법들을 적극 적용하여 금후 검토해볼 필요가 있을 것이다.잡은 전혀 삭과가 형성되지 않았다. 이 결과는 종간 교잡종을 자방친으로 하고 그 자방친의 화분친을 사용할 때만 교잡이 이루어지고 있음을 나타내고 있다. 따라서 여교잡을 통한 종간잡종 품종육성 활용방안을 금후 적극 확대 검토해야 할 것이다하였다.함을 보이고 있다.X> , ZnCl$_{3}$$^{-}$같은

  • PDF

Growth of Creeping Bentgrass on Bottom Ash and Dredged up Sand with Four Organic Matter Amendment Rates Under Saline Irrigation Condition (염해 조건에서 유기물이 첨가된 준설모래와 석탄회 토양이 크리핑 벤트그래스의 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.241-252
    • /
    • 2009
  • This study was carried out to check the possibility of substituting bottom ash from the Seosan power plant for sand as growing media for creeping bentgrass (Agrostis stolonifera L.) under saline irrigation condition. Characteristics of growing media were evaluated by using column and leaching method. Creeping bentgrass cv. Pen-A1 was grown in pots with dredged up sand (DS) and bottom ash (BA) media those were amended using 1%, 2%, and 3 % OM rates in a green house. The plants were irrigated with 1.5 $dSm^{-1}$ saline water. Results showed that visual quality, plant height and shoot dry weight from DS treatment were higher than those of BA treatment. Even though BA contained more salts, repeated leaching could decrease ECe efficiently. In case of no OM amendment, the visual quality, plant height and shoot dry weight were similar between in BA and DS. Amendment of 2% OM increased the height of creeping bentgrass in DS, while decreased the plant growth in BA.

Effects of Bottom Ash Amendment on Soil Respiration and Microbial Biomass under Anaerobic Conditions (혐기조건에서 석탄바닥재가 토양호흡량 및 미생물 생체량에 미치는 영향)

  • Park, Jong-Chan;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.260-265
    • /
    • 2012
  • Soil respiration under flooded conditions is considered to be very small compared with aerobic soil respiration of soil organic matter. However, anaerobic decomposition of soil plays a key role in carbon cycling in flooded ecosystems. On the other hand, coal-ash wastes, such as fly ash and bottom ash, are known to function as a soil amendment for mitigating $CO_2$ emission and enhancing carbon sequestration in up land soils. In this study, we investigated bottom ash as a soil amendment for mitigating $CO_2$ emission, and thus enhancing carbon sequestration under anaerobic conditions. We observed that amendment of bottom ash without external organic source led to significant reduction in $CO_2$ emission rate and in total cumulative $CO_2$ emission flux over the incubation period, which was proportional to the amount of bottom ash applied. We also found that soil microbial biomass increased in response to application of bottom ash. These results suggest that bottom ash can be utilized to store $CO_2$ as a stable soil organic carbon in flooded ecosystems, as in aerobic situations.

Seasonal Variation of Soil Entrapped Methane and Dissolved Methane Flux in a Paddy Soil (논토양에서 배출된 메탄과 토양용액중 용존 메탄의 계절변이)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.41-45
    • /
    • 1997
  • This study was conducted to investigate methane production, emission and diffusion under organic matter application in paddy soil (Jeonbug Series). The rates of application of rice straw were 5,000kg/ha in combination with 110kg N/ha as chemical fertilizer. In seasonal variations of the $CH_4$ emission rates two maxima were found during the ear formation stage and the heading stage of the rice plant. Entrapped methane increased dining the early growing season, declined thereafter and especially increased during the heading stage. Methane concentration in the soil solution was the higest at 5cm depth, but decreased with upper and lower depth. The gas diffusion rate of $CH_4$ was very slow in the liquid phase. Eh of soil solution varied from -150~-160mV and methane prodution rate was highly correlated with Eh.

  • PDF

Representative Physical and Chemical Properties of Korean Soils by the Results from Detailed Soil Survey (우리나라 토양(土壤)의 대표적(代表的)인 물리화학적(物理化學的) 특성(特性) (정밀토양조사결과(精密土壤調査結果)를 중심(中心)으로))

  • Hur, Bong-Koo;Jo, In-Sang;Min, Kyeong-Beom;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.330-336
    • /
    • 1984
  • These studies were aimed to find out the representative values of physico-chemical properties in Korean soils and to serve the basic informations to improve the soil properties for increasing the soil productivity. By the results of detailed soil survey, 14 physico-chemical properties (soil texture, moisture characteristics, organic matter content etc) were collected from 315 series of soils except Cheju soils, computerized the simple mean and the distributed area by weighted mean values with grouping of land use, drainage class and soil type. The results were as follows; 1. Simple mean values within the efficient soil depth in whole country soils were clay 20.0%, organic matter 2.03% and CEC 10.3me/100g. But weighted mean values with land area belonged to the same soil series were clay 18.0%, OM 1.85% and CEC 8.6me/100g. 2. Mean values of paddy soils weighted by area were clay 19.7%, OM 2.0% and CEC 9.1me/100g but those of upland soils were 17.9%, 1.8% and 8.1me/100g and forest soils were 16.7%, 1.8% and 8.6me/100g respectively. 3. Weighted mean values of moderately well soils with covered area were clay 18.9%, organic matter 1.7%, CEC 8.4me/100g but those of imperfectly drained soils were 21.3%, 2.2% and 9.5me/100g, and those of poorly drained soils were 15.1%, 1.8% and 9.9me/100g respectivcly. 4. Simple mean and area weighted mean values of clay content, pH, organic matter contents, cation exchange capacity and base saturation were calculated by the types of paddy and upland.

  • PDF

The Influence of organic Matter on Soil Aggregation in Forest Soils (삼림토양내(森林土壤內)의 유기물함량(有機物含量)이 토양입단화(土壤粒團化)에 미치는 영향(影響))

  • Park, Gwan Soo;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.367-375
    • /
    • 1990
  • In order to determine the effects of bedrock, organic matter, calcium and iron oxide on the soil aggregation, this research has performed with soils from bedrock regions of Limestone, Granite and Granite gneiss. This research was also to estimate how organic matter, calcium and iron oxide influence on soil aggregation under different forest conditions in various bedrock regions. And it also had a purpose to rate physical factors relevant to soil aggregation, their characteristics and aggregate diameter which closely relates to stabilities in the process of soil erosion. The following conclusions have been drawn in response to the overall research objectives. The rates of the soil aggregation on different bedrock regions were 21% in Limestone bedrock, 19.8% in Granite bedrock and 9.9% in Granite gneiss bedrock. A main factor in soil aggregation was the orgainc matter content in soils and the rate of soil aggregation increased in the constant proportion with the organic matter content. The relation could be formulated into Y=4.31X-4.37(Y : aggregation ratio X : organic matter content). The soil aggregation ratio under the deciduous forests eras higher than that under the coniferous forests. It was considered that this resulted from differences in organic matter content. Soil aggregates with larger diameter than 0.5mm were found more in Limestone bedrock than other smaller size soil aggregates of 0.25mm diameter were more distributed in Granite gneiss bedrock. Granite bedrock region had normal distribution in soil aggregate sizes with the highest frequency of 0.5mm diameter. Calcium and iron oxides had only partial influences on the soil aggregation in some specific conditions. But in Limestone bedrock region calcium influenced on the soil aggregation with the organic matter content.

  • PDF

Soil CEC for Textural Classes in Korea (우리나라 토양(土壤)의 토성별(土性別) 양(陽)이온 치환용량(置換容量))

  • Hyeon, Geun-Soo;Park, Chang-Seo;Jung, Sug-Jae;Rim, Sang-Kyu;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 1991
  • Mean values and the relative contribution of OM and clay to total CEC for soil textural classes were obtained from the analytical results of the typical profiles(sample size : 3,182) which were described by the detailed soil maps througthout Korea with an exception of Jeju island. The results are below. 1. Mean values of the soil CEC were 2.9 for S, 4.7 for LS, 6.7 for SL, 9.0 for L, 10.2 for SiL, 10.7 for CL, 8.6 for SCL, 12.2 for SiCL, 16.1 for SiC, and 17.4me/100gr for C, respectively. 2. The multiple regression equation and partial regression coefficient tended to show that OM and clay had the highly significant effect on CEC. 3. Clay content of the coarse, moderately coarse, and moderately fine soil was 1.10 to 1.89 times as important as OM content whereas OM of the medium and fine soil 1.09 to 2.94 times as important as clay in predicting CEC. 4. Mean values of CEC of the humus and clay in Korean soils were about 62.9 and 24.0me/100gr, respectively.

  • PDF

Studies on the Physico-chemical Properties and Characterization of Soil Organic Matter in Jeju Volcanic Ash Soil (제주도(濟州道) 화산회토양(火山灰土壌)의 이화학적(理化学的) 특성(特性) 및 유기물(有機物) 성상(性状)에 관(関)한 연구(硏究))

  • Lee, Sang-Kyu;Cha, Kyu-Seuk;Kim, In-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.20-27
    • /
    • 1983
  • A series of laboratory experiment was conducted to find out the chemical composition, characterization of humic substances by physical and chemical methods and reaction of Na-pyrophosphate, $Ca(OH)_2$ and rice straw with albumin on the degradation of soil organic matter in the volcanic ask soils of the Jeju Island. Results obtained were summarized as follows: 1. The contents of organic matter, available silicon, active iron and aluminum concentration in volcanic ash the soils were remarkably higher but available phosphorous was comparatively lower than the mineral soils. In volcanic ash soil, the contents of potassium, calcium and magnessium were higher in upland soil than that of forest soil. The ratios of active $Al^{{+}{+}{+}}/Fe^{{+}{+}}$, C/P and $K/Ca^+$ Mg were apparently high in volcanic ash soils while that of $SiO_2$/O.M. was high in mineral soil. 2. The carbon/nitrogen ratio in humin, humic acid content in organic matter, and carbon contents of humin in total carbon of soil organic matter were apparently higher in the volcanic ash soils than in the mineral soils, The total nitrogen and fractions of acid or alkali soluble nitrogen were remarkably high in volcanic ash soils while mineralizable nitrogen ($NH_4$-N and $NO_3$) contents were high in mineral soils. 3. The values of K600, RF and log K were also higher in volcanic ash soils than those in mineral soils, and the absorbance in the visible range were high and color was dark in the soil of which humification was progressed Extracted humic acid from volcanic ash soil was less reactive to the oxidizing chemical reagent and was persistance to the acid or alkali hydrolysises. 4. The major oxygen-containing functional groups in humic substances of volcanic ash soils were phenolic-OH alcoholic-OH and carboxyl groups while those in mineral soil were methoxyl and carbonyl groups. 5. Absorption spectra of alkaline solution of humic acid ranged from 200 nm to maxima 500 nm. Visible spectra peaks of from humic substances in the visible region were recognized at 350, 420, 450 and 480 nm. Only one single absorbance peak was observed in the visible region at 362 nm for Heugag series and two absorbance Peak were also at 360 nm and 390 nm for Yeungrag series. 6. Evolution of carbon as $Co_2$ was increased with addition of Na-pyrophosphate in Namweon and Heugag series, and "priming effects" took place on the soil organic matter decomposition by addition of rice straw with albumin in Ido series.

  • PDF

Effect of Various Carbon Sources on Heterotrophic Acetylene Reducing Activities of Submerged Soil (담수토양(湛水土壤)에서 수종유기물(數種有機物)의 시용(施用)이 타양성(他養性) 질소고정력(窒素固定力)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Matsuguchi, Tatsuhiko
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.286-293
    • /
    • 1983
  • The glucose application remarkably increased the heterotrophic acetylene reducing activities during one month incubation. The amount of the increases varied between the soils. Application of rice straw brought about the significant increases during incubation time. Compost contained the largest amount of available-N among the C-sources, and thereby brought the smallest increase in all soils. The cumulative fixed nitrogen with application of rice straw at 30 days incubation in the three experimented soils were highest in Hwadong clay soil, i.e, $2.2mg^N/100g$, intermediate in Ratchaburi soil $0.85mg^N$, and least in Konosu soil $0.80mg^N/100g$. On the other hand, nitrogen fixing heterotrophic, bacteria, such as Clostridia, aerobes and anaerobes, were remarkably increased by application of rice straw while Azotobacter and Beijerinkia were not. The cumulative fixed nitrogen was more pronounced in the clay soil than in the coarse loamy soil. More pronounced nitrogen fixing activities in light condition(heterotrophic + photosynthetic) than that in dark(heterotrophic) condition have been observed both in the coarse loamy and clay soils. The nitrogen fixing ability of photosynthetic microbes in paddy soil is probably higher in coarse loamy soil than in clay soil.

  • PDF

Effect of long-term organic matter application on physico-chemical properties in paddy soil -I. Changes of the soil-chemical properties of paddy field by long-term application of organic matter (논토양(土壤)의 이화학적(理化學的) 성질(性質)에 미치는 유기물(有機物)의 연용효과(連用效果) -I. 유기물연용(有機物連用) 답(畓)의 토양화학적(土壤化學性) 변화연구(變化硏究))

  • Yoo, Chul-Hyun;Kim, Jong-Gu;Park, Keon-Ho;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.264-271
    • /
    • 1988
  • This experiment was carried out to investigate the effects of long-term applications of organic matters on the chemical properties and on the application levels of nitrogen in Fluvio-Alluvial plain of Jeonbug series. The amounts of application of rice straw and compost, the sources of organic matters, were 500 and 1,000 kg/10a in combined with the different nitrogen levels of 0.15 and 20 kg/10a, respectively. The results obtained from the 9 year's experiment during 1979 to 1987 were summarized as follows: I. In long-term application of Organic matter the soil pH showed the lowest value in the 3rd-4th year at rice straw and 5th-6th year at compost but it varied less in control plot for 9 years. 2. Organic matter content in the soils was gradually increased by yearly application of organic matter, while it was higher in rice straw than in compost since the 5th year. 3. The contents of available silica and available phosphate in soil were rapidly increased by long-term application of organic matter and it was especially higher in rice straw than compost, but it was gradually decreased in control plot. 4. The contents of exchangable cations (Ca, Mg and K) and the total nitrogen were increased by long-term application of organic matter they were in rice straw than in compost. But they showed decreasing tendency in control plot. 5. The soil Eh was lower in order of rice straw, compost and control plot however application of orgnic matter resulted in increasing soil Eh due to the rapid reduction of soil from panicle formation to heading stage in rice cultivation. 6. The number of panicles per $m^2$ and the number of granis per panicle were increased by increment of nitrogen levels in all treatments and especially largest in rice straw application. But 1,000 grain weight increased in low nitrogen level with long-term applications of organic matter. 7. It was estimated that the application levels of nitrogen by long-term application of organic matter were 21, 24 and 20 kg/10a for 1st-3rd, 4th-6th and 7th-9th year in rice straw application, and 16 and 19 kg/10a for 1st-3rd and 4th-9th year in compost application, respectively.

  • PDF