• Title/Summary/Keyword: 토양용출특성

Search Result 189, Processing Time 0.027 seconds

Experimental Studies on Dissolution Characteristics of a Heavy Metal(As) in Mining Waste (광산매립지에서 중금속(As)의 용출 특성에 관한 실험적 연구)

  • Han, Choon;Seo, Myoung-Jo;Yoon, Do-Young;Choi, Sang-Il;Lee, Hwa-Young;Kim, Sung-Kyu;Oh, Jong-Kee
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.55-63
    • /
    • 1998
  • This study investigates the contamination mechanism of soil by drainages including acid rains around mining waste sites, and suggests the quantitative methods of prevention against soil contaminations and its alternatives. For these purposes, the dissolution of arsenic in soils, which is one of toxic heavy metals, has been examined experimentally using the artificial acidic solution. Also, in order to prevent dissolution of arsenic by acid rain, the effects of limestone for the neutrality method on the soil were investigated. The arsenic in soil specimen was dissolved by strong acidic solution below pH1.0. The maximum amount of dissolved arsenic increased with decreasing pH value. Furthermore, it was found very effective to use limestones for the neutrality method. The neutralization of limestones in acidic solution was found to follow the equation of chemical reaction-controlling formulation in unreacted-core models.

  • PDF

Optimum Condition of Soil Dispersion for Remediating Heavy Metal-Contaminated Soils using Wet Magnetic Separation (중금속 오염 토양 정화를 위한 습식자력선별법 사용 시 최적 토양분산 조건)

  • Chon, Chul-Min;Park, Jeong-Sik;Park, Sook-Hyun;Kim, Jae-Gon;Nam, In-Hyun
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.121-135
    • /
    • 2012
  • Soil dispersion and heavy metal leaching with two heavy metal-contaminated soils were studied to derive the optimal dispersion condition in the course of developing the remedial technology using magnetic separation. The dispersion solutions of pyrophosphate, hexametaphosphate, orthophosphate and sodium dodecylsulfate (SDS) at 1 - 200 mM and the pH of solutions was adjusted to be 9 - 12 with NaOH. The clay content of suspension as an indicator of dispersion rate and the heavy metal concentration of the solution were tested at the different pHs and concentrations of the dispersion solution during the experiment. The dispersion rate increased with increasing the pH and dispersion agent concentration of the solution. The dispersion efficiency of the agents showed as follows: pyrophosphate > hexametaphosphate > SDS > orthophosphate. Arsenic leaching was sharply increased at 50 mM of phosphates and 100 mM of SDS. The adsorption of $OH^-$, phosphates and dodecysulfate on the surface of Fe- and Mn-oxides and soil organic matter and the broken edge of clay mineral might decrease the surface charge and might increase the repulsion force among soil particles. The competition between arsenic and $OH^-$, phosphates and dodecylsulfate for the adsorption site of soil particles might induce the arsenic leaching. The dispersion and heavy metal leaching data indicate that pH 11 and 10 mM pyrophosphate is the optimum dispersion solution for maximizing dispersion and minimizing heavy metal leaching.

A Study on Leaching Characteristics of $Cr^{6+}$ in Cement Grout Materials (시멘트 그라우트재에서 $Cr^{6+}$용출특성에 관한 연구)

  • 김동우;이재영;천병식
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The aim of research is the evaluation of the $Cr^{6+}$ emission features of the liquid injection through emission experiments in varying conditions, based on a field-mixing ratio. The results showed that the content of $Cr^{6+}$ content in cement measured had an Ordinary Potland Cement (OPC) of 25.3 mg/kg, which constitute the largest portion among the other materials. Likewise, the emission experiment of homo-gel and sand-gel generally satisfied the standard of KSLT (Korea Standard Leaching Test) in waste of 1.5 mg/L, but in case of the standard of KSLT in soil the emission of OPC $Cr^{6+}$ of 4.85 mg/kg. These conditions is a little exceeded the criteria in the ‘Ga’ area in terms of Korea Soil Environmental Preservation Law. In addition, results generated by the mock-up injection facilities revealed that $Cr^{6+}$ emission increased as Water/Cement and injection pressure increased. At injection pressure higher than 4 kg/㎤, $Cr^{6+}$ emission exceeded the water preservation standard of 0.5 mg/L. Similarly, a pattern experiment of C $r^{6+}$ emission according to pH was conducted, in order to evaluate the $Cr^{6+}$ emission features of grout materials in leachate below pH 5 such as pH 4 acid rain or landfill. Results show that $Cr^{6+}$ emission dramatically increased in high acidic or basic state. It indicates that $Cr^{6+}$ emission will probably increase in an environment where grout materials are injected. On the other hand, concentration of leachate was determined in areas where grout materials are used. The results show that the concentration of emission in an ultra purity condition does not manifest intensity, and is affected in the OPC>MC>SC order. It means that the pollutants or $Cr^{6+}$ emission increases with decreasing concentration. As such, $Cr^{6+}$ emission will probably exceed the countermeasure criteria according to the types of gout materials. Similarly, high pressure or injection will cause increased $Cr^{6+}$ emission. Therefore, the selection of materials or mixing ratio should be considered in general as well as according to specific industries, based on the strength and pH of $Cr^{6+}$ emission.

A study on using the lime sludge as a sanitary landfill liner (위생매립지 차수재로써의 부산석회 이용에 관한 연구)

  • 구자공;도남영;임재신;이상민;김남돈
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.149-161
    • /
    • 1999
  • In this study, to examine the applicability of the lime sludge as a landfill liner, 1) the geoechnical characteristics of sludge, 2) the characteristics of migrations of contaminants, and 3) the characteristic of leaching in the batch leaching test are investigated As a result, the hydraulic conductivity(K) of the lime sludge was found out to have 10 times lower hydraulic conductivity than the maximum allowable hydraulic conductivity of the liner Retardations of heavy metals(Cu, Pb) were found out to be higher than that of organic(phenol) due to the high pH(>11.0) of 4he lime sludge. As a result of the leaching test. the concentrations of Pb and Cu were found to be close to allowable limitation, so that they need to be kept in constant watch.

  • PDF

Geochemical Behavior of Metals in the Contaminated Paddy Soils around Siheung and Deokeum Mines through Laboratory Microcosm Experiments (실내 microcosm실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구)

  • 김정현;문희수;안주성;김재곤;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • Seasonal variations in vertical distributions of metals were investigated in the contaminated paddy soils around Siheung Cu-Pb-Zn and Deokeum Au-Ag mines. Geochemical behavior of metals was also evaluated with respect to redox changes during the cultivation of rice. Two microcosms simulating the rice-growing paddy field were set up in the laboratory. The raw paddy soils from two sites showed differences in mineralogy, metal concentrations and gecochemical parameters, and it is suggested that high proportions of exchangeable fractions in metals may give high dissolution rates at Deokeum. In both microcosms of Siheung and Deokeum, redox differences between surface and subsurface of paddy soils were maintained during the flooded period of 18 weeks. Siheung soil had neutral to alkaline pH conditions, while strongly acidic conditions and high Eh values were found at the surface soil of Deokeum. The concentrations of dissolved Fe and Mn were higher in the subsurface pore waters than in interface and upper waters from both microcosms, indicating reductive dissolution under reducing conditions. On the contrary, dissolved Pb and Zn had high concentrations at the surface under oxidizing conditions. From the Siheung microcosm, release of dissolved metals into upper waters was decreased. presumably by the trap effect of Fe- and Mn-rich layers at the interface. However, in the Deokeum microcosm, significant amounts of Pb and Zn were released into upper water despite the relatively lower contents in raw paddy soil, and seasonal variations in the chemical fractionation of metals were observed between flooded and drained conditions. Under acidic conditions, rice may uptake high amounts of metals from the surface of paddy soils during the flooded periods, and increases of exchangeable phases may also increase the bioavailability of heavy metals in the drained conditions.

The Effects of Kinetics on the Leaching Behavior of Heavy Metals in Tailings-Water Interaction (광미-물 상호반응에서 반응시간이 중금속 용출에 미치는 영향)

  • Kang Min-Ju;Lee Pyeong-Koo;Kim Sang-Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.23-36
    • /
    • 2006
  • Experimental leaching of tailings was performed as a function of times (1, 2, 4, 7, 14, 21 and 30 days) in the laboratory using reaction solutions equilibrated to three different pH set-points (pHs 1,3 and 5). The initial pHs of 5 and 3 stabilized at either 4.6-6.1 or 2.8-3.5 in 2 days and decrease gradually with time afterwards. The results of the leaching tests indicate that the significant increase in the sulfate concentrations and in acidity after 7 days of leaching results from the oxidation of sulfide minerals. There were no significant variations in the extractable Pb found in the leach solutions of pH 5 and 3 within the reaction time (1-30 days), while Zn, Cd and Cu concentrations tend to significantly increase with time. In tailings leaching at an initial pH=1, two trends were observed: i) The 'Zn-type' (Zn, Cd and Cu), with increasing concentrations between days 1 and 30, corresponding to the expected trend when continuous dissolution is the dominant process, ii) the 'Pb-type' (Pb), with decreasing concentrations over time, suggesting rapid dissolution of a Pb source followed by the precipitation of 'anglesite' in relation to the large increase in dissolved sulfates. The high sulfate concentrations were coupled with high concentrations of released Fe, Zn and Cd. Release of Zn and Cd and acidity from these leaching experiments can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment. The kinetic problems could be the important factor which leads to increasing concentrations of trace metals in the runoff water.

Characterization of Heavy Metal-enriched Particles from Contaminated Soils in a Military Shooting Range (군사격장 오염토양 내 고농도 중금속함유 입자의 기초특성연구)

  • Kim, Jeeeun;Kim, Jeongjin;Bae, Bumhan;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.25-31
    • /
    • 2013
  • Civil and military firing ranges are usually contaminated with heavy metals such as lead and copper and remediation is required. Acid washing and extraction are common remediation methods. Lead contaminated firing range soil samples were collected and a preliminary study was conducted to evaluate the characteristics of the contamination and the contribution of high specific gravity particles. Ethylenediamine tetra acetic acid(EDTA) extraction was applied for the removal of heavy metal but the extraction was not feasible for the firing range soil. Even after the repeated EDTA extraction, the contamination were still over the Korean environmental standard indicating that soil particles highly contaminated with heavy metal which release the heavy metal ion even after the repeated extraction. Some colored and higher specific gravity particles were separated from the soil samples and analyzed. The colored particles have specific gravity of 2.5-6.6. The saturation ratio of Pb and EDTA was 4.9-32%. After removal of these colored particles, the sandy soil showed moderate contamination which can be treated with soil washing. This was proved with the five-level sequential extraction and TCLP tests.

Investigation of the Rice Plant Transfer and the Leaching Characteristics of Copper and Lead for the Stabilization Process with a Pilot Scale Test (논토양 안정화 현장 실증 시험을 통한 납, 구리의 용출 저감 및 벼로의 식물전이 특성 규명)

  • Lee, Ha-Jung;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.255-264
    • /
    • 2012
  • The stabilization using limestone ($CaCO_3$) and steel making slag as the immobilization amendments for Cu and Pb contaminated farmland soils was investigated by batch tests, continuous column experiments and the pilot scale feasibility study with 4 testing grounds at the contaminated site. From the results of batch experiment, the amendment with the mixture of 3% of limestone and 2% of steel making slag reduced more than 85% of Cu and Pb compared with the soil without amendment. The acryl column (1 m in length and 15 cm in diameter) equipped with valves, tubes and a sprinkler was used for the continuous column experiments. Without the amendment, the Pb concentration of the leachate from the column maintained higher than 0.1 mg/L (groundwater tolerance limit). However, the amendment with 3% limestone and 2% steel making slag reduced more than 60% of Pb leaching concentration within 1 year and the Pb concentration of leachate maintained below 0.04 mg/L. For the testing ground without the amendment, the Pb and Cu concentrations of soil water after 60 days incubation were 0.38 mg/L and 0.69 mg/l, respectively, suggesting that the continuous leaching of Cu and Pb may occur from the site. For the testing ground amended with mixture of 3% of limestone + 2% of steel making slag, no water soluble Pb and Cu were detected after 20 days incubation. For all testing grounds, the ratio of Pb and Cu transfer to plant showed as following: root > leaves(including stem) > rice grain. The amendment with limestone and steel making slag reduced more than 75% Pb and Cu transfer to plant comparing with no amendment. The results of this study showed that the amendment with mixture of limestone and steel making slag decreases not only the leaching of heavy metals but also the plant transfer from the soil.