• Title/Summary/Keyword: 토양용출특성

Search Result 189, Processing Time 0.03 seconds

A Leaching Characteristics on Lime Stabilization of Heavy Metal Contaminated Soil in a Waste Mine Area (폐 광산 지역 중금속 오염 토양의 석회안정화 적용 시 용출특성)

  • Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.862-867
    • /
    • 2011
  • Pozzolanic-based stabilization/solidification (S/S) is an effective and economic remediation technology to immobilize heavy metals in contaminated soils. In this study, quick lime (CaO) was used to immobilize cadmium and zinc present in waste mine contaminated clayey sand soils. Addition of 5% quicklime to the contaminated soils effectively reduced heavy metal leachability after 2 bed volume operation below the drinking water regulatory limits. Lime addition was revealed to increase the immobilization for all heavy metals in tested pH ranges, so it could be an optimal choice for short-term remediation of heavy metal contaminated soil. The mass balances for these column tests show metal reduction of 92% for Cd and 87% for Zn of total resolved mass in case of 5% lime application.

Study on the Oxidation Process of Potential Acid Sulfate Soil (잠재 산성황산염토양의 산화과정에 대한 연구)

  • Han, Kang-Wan;Chun, Jae-Chul;Cho, Jae-Young;Kim, Geum-Hee;Ann, Yeoul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.243-248
    • /
    • 1996
  • To find out the oxidation process of potential acid sulfate soil(PASS) along with time. the PASS were treated with lime and ammonia water to adjust soil pH in laboratory column condition. pH range of PASS showed 6.5 to 7.5. however, complete oxidized PASS by $H_2O_2$ showed 2.1 to 2.5. After pilling the PASS under the natural condition. oxidation occured slowly from surface of the pilled soil. The oxidation of PASS proceeded slowly when the soil was in submerged condition. but quickly in dried condition. The content of sulfide-sulfur in PASS sharply decreased after exposing to the air and the decreasing rate was greater in dried than in submerged condition. The content of sulfate-sulfur continuously decreased in submerged condition. but increased in dried condition. Contents of $Fe^{+{+}}$ and $Al^{+{+}}$ in PASS were generally increased with time and the increasing rate was greater in submerged than in dried condition. Liming to PASS was slowly acting to pH change and ammonia water caused fast pH change within a short period of time. The contents of sulfate-sulfur and exchangeable aluminum in drainage water decreased with time and the contents of sulfide-sulfur and ferrous iron were increased.

  • PDF

A Study on the Characteristics of the Landslide in Hyuseok-dong(II) -Geological and Hydrological Characteristics- (휴석동(休石洞) 땅밀림형(型) 산사태(山沙汰)의 발생특성(發生特性)에 관한 연구(硏究)(II) -지질(地質) 및 수문특성(水文特性)-)

  • Woo, Bo-Myeong;Park, Jae-Hyeon;Choi, Hyung-Tae;Jeon, Gi-Seong;Kim, Kyung-Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.4
    • /
    • pp.571-576
    • /
    • 1996
  • The geological and hydrological survey was carried out in Hyuseok-dong landslide area(10 ha), Youngchoon-myeon, Danyang-gun, Choongcheongbuk-do. The results showed that the bed rocks in this area consisted of shale, sandstone and limestone, and the piles of stones debris were also scattered around the hill above the study area. Soil texture was sandy loam, and bulk density of the soil in the lower part of the area was higher than that of the upper part, but void ratio of the soil in the lower part was lower than that of the upper part. Subsurface water was springing out to the surface in many places in this area. In this area, the storms over 70mm/day were frequent during the summer period from June through September. It was concluded that the occurrence of landslide had a close relationship with the geological characteristics, hydrological conditions and the rainfall distribution.

  • PDF

Relationship between Physicochemical Properties, Heavy Metal Contents and Magnetic Susceptibility of Soils (토양의 물리화학적 특성, 중금속 함량, 대자율 간의 상호관계 연구)

  • Chon, Chul-Min;Park, Jeong-Sik;Kim, Jae-Gon;Lee, Youn-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.281-295
    • /
    • 2010
  • This paper deals with magnetic susceptibility, mineralogy, soil properties (pH, EC, CEC, loss on ignition), iron and manganese oxides, the content and partitioning of heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn), and their mutual relationship in the soil samples of an unpolluted, abandoned mine area, and industrial complex area. The various minerals derived from weathered bedrock were identified by X-ray diffraction in the unpolluted soil samples, except for the magnetic minerals. XRD analysis also revealed the existence of hematite and magnetite related to mine tailings and waste rocks in the abandoned mine area samples. The industrial complex area samples had carbonate minerals, such as calcite and dolomite, that might be due to anthropogenic deposition. The sum of the reducible, oxidizable, and residual fractions was over 80% for the abandoned mine area samples and over 50% for the industrial complex area samples using the sequential extraction method. The industrial complex area samples had a relatively high carbonate fraction that was associated with carbonate minerals. The content of aqua regia-extractable Fe, Mn, As, and Zn had a high positive correlation with the content of the dithionite-citrate-bicarbonate (DCB)-extractable method related to Fe/Mn oxide phases. The 54% and 58% of aqua regia-extractable Fe and As content, respectively, acted together with the concentrations of the DCB-extractable phases. Magnetic susceptibility values of total samples ranged from 0.005 to $2.131{\times}10^{-6}m^3kg^{-1}$. The samples including iron oxide minerals, such as hematite and magnetite, had a high magnetic susceptibility. The magnetic susceptibility showed a significant correlation with the heavy metals, Cd (r=0.544, p<0.05), Cr (r=0.714, p<0.01), Ni (r=0.645, p<0.05), Pb (r=0.703, p<0.01), and Zn (r=0.496, p<0.01), as well as Fe (r=0.608, p<0.01) and Mn (r=0.615, p<0.01). The aqua regia-extractable Fe and Mn content had a significant positive correlation with Cd, Cr, Cu, Ni, and Zn. However, the DCB-extractable Fe and Mn content had a significant positive correlation with As and Ni, indicating that the heavy metals were associated with Fe and Mn oxide minerals.

Effect of Ferro-nickel Slag on Contamination of Soil and Water (페로니켈슬래그(FNS)가 토질 및 수질오염에 미치는 영향)

  • Park, Kyungho;Kim, Daehyeon;Kim, Byungho;Go, Youngjin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.21-33
    • /
    • 2013
  • The purpose of the study is to evaluate engineering properties of Ferro Nickel Slag (FNS) and to investigate the effects of FNS on potential contamination of surrounding soil and water through small and large chamber tests. Soil conditions in the chamber tests were made as closely as possibile to the field conditions. In order to simulate different types of water, we used fresh water, acidic water and seawater. Sand soils were made with relative densities of 40% and 60%, and clay with the degree of compaction of 90%. After flushing water through the FNS in the chambers was completed, the PH test was performed for the water flowing out of the chambers and the soil samples were collected for soil pollution analysis. Based on the results of the chamber tests, although the pollution level was slightly higher in the silt than in the sand, the environmental effect that FNS causes the surrounding soil was found to be very minimal. This indicates that FNS can be used as construction material in place of natural aggregates.

Chemical Fixation and Sorption of Bentonite for the Removal of Heavy Metals in Acid Mine Drainage (AMD) (광산산성폐수에 함유된 중금속 처리를 위한 Chemical Fixation과 Bentonite의 흡착)

  • Jang, Am;Kim, In-S.
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.33-43
    • /
    • 2000
  • Mining wastes left without any proper treatment are affecting barren or arable lands where are located near and far from source through various pathway Metals are the only hazardous constituents that cannot be destroyed or altered by chemical or thermal methods and must be converted into the most insoluble and harmless form as possible, which have slower leaching rates than the original species, to prevent their reentry into the environment. Three types of chemical additives used in this study to immobilize heavy metals showed high immobilized capacity (q) and the efficiency (k) in the order of CaO, $Na_2$S.$5H_2$O, and $CaCO_3$. In addition, bentonite was considered as a good additive to remedy AM(Acid Mine Drainage) from the results of the physicochemical characteristics and immobilizing capacity. The Freundlich coefficients (n and k) from adsorption isotherm for the heavy metals adsorbed on 50g Benlonite were calculated.

  • PDF

Immobilization of Lead in Contaminated Soil by Ekectrokinetic Remediation and Adsorbent (흡착재와 Electrokinetic 기법을 이용한 납 오염토의 고정화)

  • Han Sang-Jae;Kim Byung-Il;Lee Goon-Taek;Kim Soo-Sam
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.1-11
    • /
    • 2005
  • This study applied EK method to remediate contaminated soil by lead (Pb), tried increasing efficiency of remediation using adsorbent (apatite and zeolite) as enhanced EK remediation method to overcome the limit of traditional EK remediation method. Adsorption tests on Pb were practiced to extract EK, making different concentration of contaminated soil, voltage condition, operating time etc., transferring Pb-ion into the position of adsorbent, then tried immobilization. On this results, the efficiency of remediation is different on its test conditions. In addition, the efficiency of remediation was not only improved by adding electrode revεrsal and install position of adsorbent but also satisfied TCLP regulation of EPA in USA through the whole sample range. Finally, absorption and immobilization capacity of apatite and zeolite proved on its excellence and confirmed the possibility of application of apatite and zeolite as enhanced EK remediation method.

Leaching and Acute Toxicity Test of Steel-making Slags for Media Contact Recycling (제강슬래그의 매체접촉형 재활용에 따른 중금속 용출특성 및 물벼룩 생태독성 평가)

  • Donghyun Kim;Bong Seok Cho;Won Sik Shin
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.72-83
    • /
    • 2024
  • Most of the slags generated from steel-making industry in Korea are recycled into media-contact aggregates such as fill and cover materials. For their use as media-contact aggregates, the slags must meet not only the waste quality criteria, but also the Daphnia magna acute toxicity test criteria. In this study, Korean Leaching Test ES 06150.e (Korea), Japanese Leaching Test JIS K 0058-1(Japan), Detuch Leaching Test DIN 19529 (Germany), Toxicity Characteristic Leaching Procedure (USA) were conducted for batch leaching test of slags from 6 Korean steel-making companies. In addition, Korean Standard up-flow percolation test (ES 06151.1) mimicking field conditions was conducted to assess the impact of the slag leachate on the surrounding environment indirectly. Heavy metals such as Cr6+ and Zn2+ were detected from both extractant and leachate samples, but all of them did not exceed waste quality criteria of each country. However, Daphnia magna acute toxicity tests using the leachate samples from up-flow percolation test with slag alone and slag/natural soil conditions exceeded ecotoxicity standard (TU=2) due to their high pH (11.3-12.5). After neutralizing the pH of the slag leachate to 6.5~8.5, the Daphnia magna mortality and immobilization were reduced to satisfy ecotoxicity standard. As the reducing pH of slag leachate would be extremely difficult, appropriate recycling management considering the physicochemical characteristics of he slags should be stuided further.

Characterization of Heavy Metals in the Stream Sediment around an Old Zinc Mine (가학광산 지역 하천 저니토 중금속의 화학적 특성)

  • Yoo, Sun-Ho;Ro, Kwang-Jun;Lee, Sang-Mo;Park, Moo-Eon;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.432-438
    • /
    • 1996
  • This study was carried out to prepare information for the establishment of countermeasures for an area contaminated with minewaste from an old zinc mine at Kahak-long in Kwangmyong. Minewaste and bottom sediments from the streams in this area were sampled and were analyzed for Cd, Cu, Pb, and Zn extracted with different solution. Total heavy metal contents in both minewaste and bottom sediments were fairly high. Cadmium and Zn contents in the minewaste and Cd, Cu, Pb, and Zn contents in the bottom sediments extracted with 0.1 N HCl showed a much higher level than those in the background level of paddy soils and in the soils around the other metal mines regardless of the distance from the mine. Sulfide/residue forms of Cd, Cu, Pb, and Zn covered the highest portions for the minewaste. For bottom sediments, sulfide/residue forms of Cu and Zn formed the highest portions, whereas the contents of both carbonate and sulfide/residue forms of Cd and Pb were significant. The lower the pH of the extracting solutions, the more heavy metals extracted from both minewaste and bottom sediments.

  • PDF

Characteristics of Nutrient Release of Biochar Pellets through Soil Column during Rice Cultivation (토양 Column을 이용한 벼 재배 시 바이오차 팰렛의 양분용출 특성)

  • Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.63-70
    • /
    • 2018
  • This experiment was conducted to investigate nutrient leaching and mobility through soil column for application of biochar pellet during rice cultivation. For nutrient leaching through soil column experiment, it was also consisted with four treatments as control, 100% of pig manure compost pellet (PMCP), biochar pellet (pig manure compost:biochar, 6:4)(BP), and slow release fertilizer (SRF). For experimental results, it was observed that $NH_4-N$ concentration in the leachate was gradually decreased at pick of 35 days and $NO_3-N$ concentration was highest from 60 to 98 days after transplanting. $PO_4-P$ concentration in the leachate was shown to be lowest in the PMCP and BP. K concentration in the leachate was highest in the control, but lowest in SRF. For mobility of nutrient in soil depths, it shown that $NH_4-N$ concentrations were highest from 40 to 60cm and did not significantly different among treatments except the control. It was observed that the deeper depth, the higher concentration for $NH_4-N$ concentrations, but for $PO_4-P$ concentrations the deeper depth, the lower concentration. And also $PO_4-P$ concentration was highest in the control. For K mobility in soil, its pattern was appeared to be approximately same between the control and PMCP, and between BP and SRF. Therefore, it might be potential to be applied biochar pellet to reduce mobility of plant nutrients for rice cultivation.