• Title/Summary/Keyword: 토양용액

Search Result 465, Processing Time 0.026 seconds

pH Dependence on EC in Soils Amended with Fertilizer and Organic Materials and in Soil of Plastic Film House (비료와 퇴구비를 처리한 토양과 시설재배지 토양에서 토양의 EC에 따른 pH변화)

  • Kim, Yoo-Hak;Kim, Myeong-Sook;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.247-252
    • /
    • 2005
  • Soil pH is an intensity factor of releasing hydrogen ion which is buffered by aluminum. It depends on pH buffer capacity of Al whether soil pH is governed directly by cations or not. A study was conducted to elucidate the pattern of pH changes by soil EC. Fertilizer and three kinds of organic manures composed of cow and pig and fowl dropping and one kind of rice straw compost were added independently into upland sandy loam soil. This treated soils and four upland soils under plastic film house having different levels in electrical conductivity (EC) were incubated with field capacity at $30^{\circ}C$ for 5, 10, 20 and 40 days. Soil pH varied directly as the cations contained in organic materials according to degree of saturating pH buffer capacity (pBC) of sandy loam soil. pH of the soils under plastic film house was lowered by soil EC due to governing by overplus of cation beyond pBC.

A Study on the Cleanup of Diesel-Contaminated Soil by Micro-Bubble Soil Washing Process (미세기포를 이용한 토양세척기법의 디젤 오염토양 정화에 관한 연구)

  • 조장환;정민정;민경석;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.04a
    • /
    • pp.97-99
    • /
    • 1999
  • 본 연구에서는 디젤로 오염된 토양을 효율적으로 정화하기 위해, 알칼리제와 과산화수소를 이용하는 새로운 방식의 토양세척기법에 대하여 일련의 회분식 실험을 통하여 최적의 운전조건을 검토하고자 하였다. 알칼리제인 NaOH를 이용하여 세척수의 pH를 상승시켜, 강알칼리 상태에서 과산화수소를 주입하면 미세기포가 발생되며, 이 미세기포에 의해 토양에 흡착되어 있는 유류 오염물질이 효과적으로 탈착.부상된다. #60(0.25mm) 이하의 자연토양을 6,500 mg TPH/kg dry soil로 오염시켜 사용하였으며, 세척수의 pH, 진탕비(토양 중량 : 세척용액 부피), 과산화수소 주입량, 세척시간에 의한 영향을 살펴보았다. 세척수의 pH는 12, 진탕비는 1:5, 과산화수소 주입량은 1%, 세척시간은 1시간으로 적용한 결과 최대효율(60%)을 얻을 수 있었다.

  • PDF

Adsorption of Pentachlorophenol (PCP) on Clay Minerals from Hexane Solution (Hexane 용액중(溶液中)에서 점토용물(粘土鏞物)에 의(依)한 PCP 흡착(吸着))

  • Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.141-145
    • /
    • 1974
  • Adsorption experiments were carried out with several clay minerals and PCP hexane solution in order to clarify the status of adsorbed PCP on the clay surface. The amount of PCP adsorption on clay minerals was much greater in the clay-hexane system than in the clay water system. Among the clay minerals, allophane and imogolite ($SiO_2/Al_2O_3$ ratio of about 1) were the most efficient adsorbents of PCP. The PCP adsorption from hexane solution was greatly hindered by the presence of water, suggesting the occurrence of adsorption by a dipole-dipole interaction. PCP adsorption is dependent upon the nature of the clay surface and the exchangeable cations rather than the total surface area.

  • PDF

Transfer of Arsenic from Paddy Soils to Rice Plant under Different Cover Soil Thickness in Soil Amendments in Abandoned Coal Mine (폐탄광지역 비소오염 농경지(논) 개량 시 복토두께에 따른 비소의 벼 전이 및 토양용액 특성)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ko, Ju In;Bak, Gwan-In;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.483-494
    • /
    • 2021
  • This study was carried out to investigate the feasibility of reducing clean cover soil using a flooded column test in arsenic-contaminated farmland reclamation of abandoned coal mine area that shows generally low or about worrisome level (25 mg/kg) of Korea soil environment conservation act unlike abandoned metal mine. During the monitoring period of soil solution for 4 months, chemical properties (pH, EC, ORP, Fe, Mn, Ca, and As) in each layer (clean soil cover and contaminated/stabilized soil) showed different variation. This result revealed that soil solution in stabilized or contaminated soil rarely affected that in cover soil. Whether stabilized or not, arsenic concentrations in the rice roots grown in the soil covers with the thickness of 40 cm decreased by 98% in compared with the that grown in the control soil. In case of the soil covers with 20 cm thickness on stabilized soil, it decreased by 80% and this was 22 percentage point higher than when the soil of lower layer was not stabilized. Thus, reducing clean cover soil could be possible in contaminated farmland soil reclamation if appropriate stabilization of contaminated soil is carried.

Particle-size Effect of Silicate Fertilizer on Its Solubility and Mobility in Soil (토양(土壤)에 처리한 광재규산질비료의 입도별(粒度別) 용해도(溶解度) 및 이동성(移動性))

  • Yoo, Sun-Ho;Park, Lee-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.2
    • /
    • pp.57-63
    • /
    • 1980
  • The effect of particle size of silicate fertilizer, crushed slag from the steel industry, on the behavior of silicate in soil was investigated through laboratory experiments. The silicate fertilizer was sieved to obtain three fractions of particles, coarser than 10 mesh 20-35 mesh, and finer than 100 mesh. Silicate concentration of the extract obtained by shaking 20 mg of particles, coarser than 10 mesh, 20-35 mesh, and finer than 100 mesh, in 50 ml of distilled water for 4 hours was 0.3, 1.0, and 3.2 ppm respectively. As shaking the mixture of the silicate fertilizer and soil proceeded, silicate concentration of the extract increased, and this increase after 4 hour shaking was attributed mainly to dissolution of soil silicate. When the mixture of soil and the silicate fertilizer was incubated under submerged condition, silicate concentration of the solution decreased for the first 2-4 weeks, thereafter increased with incubation time. During this incubation period, silicate concentration of the solution changed inversely with pH of the solution. After 6-10 weeks, however, both silicate concentration and pH of the solution increased with incubation time. Silicate concentration of the effluent from the 14.5 cm soil column of which top 4.5 cm was packed with the mixture of 30 g of soil and 30 mg of the silicate fertilizer reached maximum at 0.94 pore volumes for the particles of 20-35 mesh and 1.03 pore volumes for the particles finer than 100 mesh, whereas the effluent concentration reached maximum at 0.88 pore volumes for the soil column without the silicate fertilizer treatment. Soil analysis made after water percolation revealed that 1.5 pore volumes of water could leach down large amount of the water soluble silicate but not the sodium acetate extractable silicate, from top 3-6 cm soil layer.

  • PDF

Application of the Nonionic Surfactant-enhanced Soil Washing to the Kuwait Soil Seriously Contaminated with the Crude Oil (원유로 심하게 오염된 쿠웨이트 토양 정화를 위한 비이온 계면활성제의 토양세척법 적용)

  • Heo, Hyojin;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.491-500
    • /
    • 2015
  • Batch experiments were performed to determine the feasibility of the surfactant-enhanced soil washing process at various washing conditions for the Kuwait soil seriously contaminated with the crude oil. The soil was sampled at a dried oil pond in Kuwait and its average TPH concentration was 223,754 mg/kg, which was too high to apply the conventional remediation process. Nine commercialized non-ionic surfactants were used for the batch experiment to measure the surfactant solubility for the crude oil because it was reported that they have worked for the soil remediation. Among them, three surfactants having high crude oil solubility were used for the soil washing experiment. From the result of batch experiment, 5% TritonX-100 washing solution showed the highest TPH removal efficiency (67%) for the crude oil contaminated soil. However, because the residual TPH concentration in the washed soil was still higher than the clean-up level in Kuwait (10,000 mg/kg), the repeated soil washing was performed. After five washings with 2% surfactant solution, the cumulative TPH removal efficiency was higher than 96% and the residual TPH concentration in the soil went down below the clean-up level. To measure the desorption capacity of TritonX-100 remained in the soil after the soil washing, the silica beads and the soil were washed five times with 2% TritonX-100 surfactant solution and then they were washed again with distilled water to detach the surfactant adsorbed on beads or soil. After five washings with surfactant solution, 7.8% and 19.6% of the surfactant was adsorbed on beads and soil, respectively. When additionally washed with distilled water, most of the residual surfactant were detached from beads and only 4.3% of surfactant was remained in soil. From the results, it was investigated that the surfactant-enhanced soil washing process with TritonX-100, Tergitol S-15-7, and Tergitol S-15-9 has a great capability for the remediation of the Kuwait soil seriously contaminated by crude oil (more than 220,000 mg/kg).

A Study on the Efficiency of Zinc Fertilizers Using Zn-65 (Zn-65를 이용(利用)한 아연비료(亞鉛肥料)의 유효도(有效度)에 관(關)한 연구(硏究))

  • U., Zang-Kual
    • Applied Biological Chemistry
    • /
    • v.20 no.2
    • /
    • pp.255-261
    • /
    • 1977
  • Using tracer technique of Zn-65, a pot experiment has been carried out in order to evaluate the efficiency of zinc fertilization on two paddy soils; an acidic from Kimpo and an alkaline from Yeongweol. The sources of zinc were zinc sulfate, zinc carbonate, zinc chloride and zinc oxide. Two rates of zinc were applied to the soils and control treatment was also included for this study. The methods of zinc application were uniform mixing throughout the soil, applying to the soil surface and irrigation water, and root dipping with zinc oxide at transplanting. In general, Yeongweol soil had higher efficiency of zinc fertilizers than Kimpo soil. The results showed that zinc fertilizer application should be required to improve the rice growing conditions in Yeongweol soil especially at early stage of growth after transplanting. As to the application method of zinc fertilizers, mixing treatment appeared to be most superior to any other methods in both soils. In addition, it is found that root dipping in the zinc oxide suspension would be a rather effective method of zinc application. In aspect of fertilizer efficiency there was no superiority or inferiority among the zinc sources used in this experiment.

  • PDF

A Study on the Application of Soil Washing Technology for HOCs-Contaminated Soil Using Mixed Surfactants (소수성 유기오염물질로 오염된 토양에 대한 혼합 계면활성제를 이용한 토양세척기법의 적용성 연구)

  • Choi, Sang-Il;Lee, Jai-Young;Jang, Min
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.103-108
    • /
    • 1997
  • A series of batch tests were conducted to evaluate the design parameters for the application of soil washing techniques to the hydrophobic organic compounds (HOCs)-contaminated soil using mixed surfactants. Because the mixed surfactants form different structures of molecular aggregates from single surfactant, they were applied to improve the washing efficiency. Kinds of surfactants added, mixing ratio, and total concentration of mixed surfactants were evaluated. The uncontaminated soil was obtained from a country hill near Nock-Chun Station in Seoul. The portion of soil passing #4 (4.75 mm) sieve was used. The pH, organic contents and cation exchange capacity were 4.4, 1.6% and 4.08 meq/100 g, respectively The soil was artificially contaminated by n-dodecane. The 5% solution of OA-5 and OA-14 (1:1) showed 86% washing efficency. The 4% solution of SDS and OA-5 (1:1) showed 95% washing efficiency.

  • PDF

Development of Electrokinetic-Flushing Equipment for a Remediation of Soil Contaminated with Radionuclides (방사성오염토양 제염을 위한 동전기세정장치 개발)

  • Kim, Gye-Nam;Jung, Yun-Ho;Lee, Jung-Joon;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Un-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • This study examined the effect of an electrokinetic-flushing remediation for a soil of a high permeability. The soil was sampled from the site around a research atomic reactor which had high hydro-conductivities due to a high content of sand in the soil. The flow rate of the washing reagent was fast at the beginning but it was reduced as time lapsed. In the case of using citric acid as a washing reagent, the flow rate was fastest, 78.7 ml/day. The removal efficiencies of $Co^{2+}$ and $Cs^+$ from a soil cell with acetic acid were the highest, which were 95.2% and 84.2% respectively. The soil waste-solution volume generated from the electrokinetic remediation was reduced to about 1/20 of that from the soil washing remediation. Meanwhile, the electrokinetic-flushing method enhanced the removal efficiencies of $Co^{2+}$ and $Cs^+$ from the soil by about 6% and 2% respectively, compared to those by the electrokinetic method. Consequently, it was found that the electrokinetic-flushing method was more effective for the remediation of a soil with a high permeability.

  • PDF