• Title/Summary/Keyword: 토양용액

Search Result 465, Processing Time 0.027 seconds

Study on the non-point source control and treatment by vegetation zone (식생대에 따른 비점오염원 관리 및 처리 연구)

  • Choi, I-Song;Kim, Sung-Won;Kim, Soeg-Ku;Oh, Jong-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.483-487
    • /
    • 2006
  • 본 연구는 비점오염원에 의한 수질오염현상을 억제하기 위한 수변지역의 관리기법 중 하나인 식생여과대를 효과적으로 설치하기 위하여 식생에 의한 오염물질의 저감능력을 파악하고 효율적 설치방안을 모색하기 위하여 수행되었다. 연구결과 T-N과 T-P의 깊이별 오염물질 저감효과는 나대지에서 표면유출이 각각 17.6%, -23.9%, 단면유출이 각각 51.7%, 91.0%, 하부유출이 각각 38.4%, 89.3%인 것으로 나타나 표면층을 통한 유출보다는 토양층에 침투될수록 오염물질의 저감효과가 높아지는 것으로 나타났다. 잔디로 표면층을 식재한 실험에서는 표면, 단면, 하부유출에서의 T-N이 각각 16.0%, 57.1%, 38.4%의 오염물질 저감효과를 보였고, T-P의 저감효과는 각각 -9.7%, 83.6%, 88.8%인 것으로 조사되었다. 또한 돌미나리로 표면층을 식재한 실험에서는 표면, 단면, 하부유출에서의 T-N 처리효율이 각각 -2.6%, 62.1%, 71.2%로 나타났으며, T-P는 각각 -7.2%, 94.5%, 84.5%인 것으로 조사되었다. 결론적으로 식생을 한 경우 전체적으로 오염물질의 저감효율이 비교적 안정되게 유지되는 것으로 나타났으나, T-P의 표면층을 제외하면 전체적인 저감효과에 크게 영향을 미치지 않은 것으로 판단된다. 그러나 일반적으로 알려져 있는 식생에 따른 오염물 저감효과에 대한 순기능 즉 토양입자의 침식방지, 토양용액의 저류작용 및 공극확대에 따른 침투능력 증대, 토성의 개량 등과 같은 기능을 무시할 수 없으므로 오염저감효과를 극대화하기 위해서는 처리대상이 되는 하천유역의 자생적 식생을 보다 효과적으로 활용할 수 있는 방안마련이 비용적 측면이나 생태 보존적 측면에서 유리할 것으로 판단된다.one)을 설치하는 대책이 필요하다. 저수지 관리를 효과적으로 수행하기 위해서는 저수지 내부의 탁도 거동을 정확히 예측할 수 있어야 한다. 따라서 추후 동수역학 및 열역학에 기초한 3차원 수치모형 연구와 성층흐름에 정밀한 밀도류 실험연구 및 이에 대한 적용이 필요할 것으로 판단된다.함으로써 정보의 질적보장과 정보전환의 표준화방안을 제시하는 정보분석시스템이다.이용, 수자원의 지속적 확보기술의 특성에 따른 4개의 평가기준과 26개의 평가속성으로 이루어진 2단계 기술가치평가 모형을 구축하였으며 2개의 개별기술에 대한 시범적용을 실행하였다.하는 것으로 추정되었다.면으로의 월류량을 산정하고 유입된 지표유량에 대해서 배수시스템에서의 흐름해석을 수행하였다. 그리고, 침수해석을 위해서는 2차원 침수해석을 위한 DEM기반 침수해석모형을 개발하였고, 건물의 영향을 고려할 수 있도록 구성하였다. 본 연구결과 지표류 유출 해석의 물리적 특성을 잘 반영하며, 도시지역의 복잡한 배수시스템 해석모형과 지표범람 모형을 통합한 모형 개발로 인해 더욱 정교한 도시지역에서의 홍수 범람 해석을 실시할 수 있을 것으로 판단된다. 본 모형의 개발로 침수상황의 시간별 진행과정을 분석함으로써 도시홍수에 대한 침수위험 지점 파악 및 주민대피지도 구축 등에 활용될 수 있을 것으로 판단된다. 있을 것으로 판단되었다.4일간의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였

  • PDF

Study of the determination of 226Ra in soil using liquid scintillation counter (액체섬광계수기를 이용한 토양 중 226Ra 분석 방법 연구)

  • Jung, Yoonhee;Kim, Hyuncheol;Chung, Kun Ho;Kang, Mun Ja
    • Analytical Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.65-72
    • /
    • 2016
  • This study presented an analytical method for detecting radium in soils using a liquid scintillation counter (LSC). The isotope 226Ra was extracted from soil using the fusion method and then separated from interfering radionuclides using the precipitation method. Radium was coprecipitated as sulfate salts with barium (Ba) and then converted into Ba(Ra)CO3, which is soluble in an acidic solution. The isotope 222Rn, the decay progeny of 226Ra, was trapped in a water immiscible cocktail and analyzed by LSC. The pulse shape analysis (PSA) level was estimated using 90Sr and 226Ra standard solutions. The figure of merit was the highest at PSA 80, while the alpha spillover was the lowest at PSA 80. The counting efficiency was 243 ± 2% in a glass vial. This analytical method was verified with International Atomic Energy Agency (IAEA) reference materials, including IAEA-312, IAEA-314, and IAEA-315. The recovery ranged from 60–82%, while the relative bias between the measured value and the recommended value was less than 10%. The minimum detectable activity was 2.1 Bq kg−1 with dry mass 1 g, the background count rate of 0.02 cpm, the recovery rate of 70% and counting time of 30 min.

Evaluation of Phytotoxicity of Food Waste During Composting (부숙과정중 음식물찌꺼기의 식물독성 평가)

  • Chang, Ki-Woon;Lee, In-Bog;Lim, Jae-Shin;Lim, Hyum-Teak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.312-320
    • /
    • 1996
  • This study was to investigate the changes of phytotoxicity of food waste during composting at an aerated static pile for 80 days. The concentration of sodium in the final compost increased by more than 30% and almost of the sodium was a water soluble type which corresponds to about 94% of the total concentration. Major volatile fatty acid(VFA) produced during the composting was acetic acid and also somewhat of butyric acid. High concentration of acetic acid during the composting was kept up for a month and then decreased progressively. It suggests that the phytotoxicity by the VFAs produced during composting of food waste could be removed through a stabilization process in a period of about 40 days. From the statistical analysis between germination index(G.I.) and VFAs. or G.I. and sodium, the phytotoxicity of food waste samples was more dependent in the changes of acetic acid concentration than that of sodium concentration. Considering low G.I. value in the final food waste compost which is matured completely, however. the agricultural utilization of the food waste compost may be to have a big problem due to excess sodium of the compost which is impossible to remove by composting and seriously inhibits growth of plants.

  • PDF

Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens Britt) as Influenced by Potassium Concentrations in the Fertigation Solution (칼륨 시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향)

  • Choi, Jong-Myung;Park, Jong-Yoon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2007
  • This study was carried out to investigate the effect of potassium concentrations in fertigation solution on growth and development of nutrient deficiency symptoms of leaf perilla (Perilla frutesens). The nutrient concentrations in above ground plant tissue, petiole sap and soil solution of root media were also determined. Potassium deficiency symptoms developed in older leaves with marginal necrosis. The brown areas on the lower leaves enlarged rapidly and the margins became scorched. Elevation of K concentrations in the fertigation solution up to 8 mM increased the crop growth in leaf length, stem thickness, and fresh and dry matter production of above ground plant tissue. However, that decreased the chlorophyll contents. The 8.0 mM K treatment which showed the greatest growth had 5.01 g in dry weight and 2.76% in K content of above ground plant tissue, suggesting that maintaining K content higher than 1.7% is necessary for good growth of Perilla frutesens. The K concentrations in petiole sap and soil solution of 8.0 mM treatment were $12,289mg{\cdot}kg^{-1}\;and\;11.65mg{\cdot}L^{-1}$, respectively. These indicated that K fertilization to maintain higher than $8,700mg{\cdot}kg^{-1}$ in petiole sap and $4.5mg{\cdot}L^{-1}$ in soil solution are necessary to ensure good crop growth.

A Study on Transport Characteristics of CMC-modified Zero Valent Iron (ZVI) Nanoparticles in Porous Media (다공성 매질내에서 CMC로 표면개질된 영가철 나노입자의 이동 특성에 관한 연구)

  • Cho, Yun-Chul;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.101-107
    • /
    • 2009
  • Carboxymethyl cellulose (CMC) as stabilizer is expected to facilitate in-situ delivery of zero-valent iron (ZVI) nanoparticles in a contaminated aquifer because it increases dispersity of ZVI nanoparticles. This work investigated the transport of CMC-stabilized ZVI nanoparticles (CMC-Fe) using column breakthrough experiments. The ZVI nanoparticles (100 mg/L Fe) were transportable through sand porous media. In contrast, non-stabilized ZVI nanoparticles rapidly agglomerate in solution and are stopped in sand porous media. At pH 7 of solution approximately 80% CMC-Fe were eluted. When the pH of solution is below 5, 100% CMC-Fe were eluted. These results suggest that the mobility of CMCFe was increased as pH decreases. In the mobility test under different ionic strengths using $Na^+$ and $Ca^{2+}$ ions, there was no signigficant difference in the mobility of CMC-Fe. Also, in the experiments of effect of clay and natural organic mater (NOM) on the mobility of ZVI, there was no significant difference in the mobility of CMC-Fe not only between 1 and 5% clay, but 100 and 1000 mg/L NOM. The results from this work suggests that the CMC-Fe nanoparticles could be easily delivered into the subsurface over a broad range of ionic strength, clay and NOM.

Influence of Different Rice Varieties on Emission of Methane in Soil and Exudation of Carbohydrates in Rhizosphere (벼 품종별 Methane 배출과 뿌리의 탄수화물 분비 특성)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Uhm, Taik-Yong;Kim, Jong-Gu;Yoo, Chul-Hyun;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.257-264
    • /
    • 1997
  • To find out the influence of different rice varieties on the emission of methane in the soil and the exudation of carbohydrates from root, the experiment was conducted on a fine silty, mesic family of Aeric Fluventinc Haplaquepts (Jeonbug series). The varities of rise involved one early maturing variety of Japonica type(namweon) and three mid-to-late maturing varieties of Japonica type and one mid-to-late variety of Indica${\times}$Japonica crossed. The methane flux over the rice canopy was measured according to the closed chamber method modified by Shin and the methane concentration in the soil was measured using porous cup installed in the soil. The carbohydrate exudates from root were measured under nutrient solution culture. It was found that the methane flux tended to be lower in early maturing varieties than in the mid-to-late maturing varieties, lower in indica${\times}$Japonica crossed variety than in Japonica type varieties. There was positive correlation between the number of tillers and the weight of roots of rice plant and methane flux. The correlation, however, tended to be greater between the weight of roots and methane flux. There was no significant difference in the concentration of methane in the soil under different varieties of rice, excepting one variety, Kehwa under which methane concentration was highest. In case of carbohydrate exudation, early maturing variety tended to be higher than other varieties, although the opposite was the case in methane flux.

  • PDF

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

Effect of water potential of culture solution on water uptake, transpiration and photosynthesis of Panax ginseng (배양액(培養液)의 수분장력(水分張力)이 인삼(人蔘)의 수분흡수(水分吸收) 증산(蒸散) 및 광합성(光合成)에 미치는 영향(影響))

  • Mok, Sung-Kyun;Park, Hoon;Lee, Chong-Hwa;Son, Suk-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.4
    • /
    • pp.115-118
    • /
    • 1981
  • Effect of water potential of culture solution on photosynthesis, transpiration and water uptake was investigated using polyethylene glycol 6000. 1. Even at -0.5 bar of culture solution phothosynthesis was decreased by 20% within 1 hour. Plant in control showed 3.26% loss of initial water for 13 hours suggesting very sensitive in water uptake. 2. Relation between water potential of culture solution (${\psi}$) and water uptake amount (W) 2-year root was ${\psi}=-2.890/e^{2.796W}$ indicating that permanent wilting point will be greater than -2.89 bar. 3. Transpiration considerably decreased with the decrease of water potential and thus by 23.9% at -0.5 bar after 4 hours. 4. From the above results ginseng plant appears to have high root water potential at permanent wilting point and thus very week to water stress due to drought or high salt content in soils.

  • PDF

Studies on Uptake by Crops of Lead and Reduction of It's Damage -I. Effects of the Lead Uptake and Yield of the Rice Plant Related to Concentration of Lead in Sandy Liquid Culture (농작물(農作物)에 대(對)한 납(pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -I. 사경용액중(砂耕溶液中) 납(pb)농도(濃度)가 수도체흡수(水稻體吸收) 및 수량(收量)에 미치는 영향(影響))

  • Kim, Bok-Young;Kim, Kyu-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.147-151
    • /
    • 1986
  • A study was carried out to investigate yield, yield components, and change of chemical components in rice plants grown under different concentration of lead compound in nutrient solution of sandy culture. The results obtained are as follows. 1. Increasing lead concentration in culture solutions, pb content in the plant was increased and crop yields were decreased. 2. The critical pb concentration at which yield was declined, was 13.6 ppm. 3. As adding higher concentration of lead in nutrient solutions, concentration of lead in rice plant was significantly increased on leaf blade, and brown rice in pb. 4. Yield loss was closely related to pb content in leaf blade.

  • PDF

Determination of moisture threshold for solution sampling in different soil texture (토양용액 채취를 위한 토성별 한계수분함량 설정)

  • Lee, Chang Hoon;Kim, Myung Sook;Kong, Myung Seok;Kim, Yoo Hak;Oh, Taek-Keun;Kang, Seong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2014
  • Soil moisture is an important factor for the availability and circulation of nutrients in arable soil. The purpose of this study was to set thresholds moisture content on soil nitrate concentration in the solution for real-time diagnosis. Sandy loam, silt loam, and sandy loam was filled with $1.2g\;cm^{-3}$ at Wagner pots, 0, 100, and $200mg\;L^{-1}$ of $KNO_3$ was saturated. Nitrate in standard solution was recovered about 95% by passing the porous cup. Nitrate concentrations in sampling of soil solution were examined by using a porous cup. The soil solution was higher in accordance with sandy loam> silt loam> clay loam, limited water filled pore space for sampling soil solution was 33.7, 56.4, and 62.2%, respectively. Nitrate concentration in the soil solution was negligible at sandy loam and silt loam during sampling periods, which was decreased about 50~82% in clay loam compared to the initial $NO_3$-N concentration in the saturated $KNO_3$ solution. Over limitation of soil solution sampling, soil EC and $NO_3$-N content were increased with the saturated $NO_3$-N concentration, regardless of soil texture (p<0.05). Conclusively, soil solution by using a porous cup was possible, regardless of the soil texture, which was useful for the diagnosis in nitrate concentration of soil solution. However, because nitrate concentration of soil solution in a clay loam changes, it was necessary for careful attention in order to take advantage for the real-time diagnosis of nitrogen management in soil.