• Title/Summary/Keyword: 토양용액

Search Result 465, Processing Time 0.021 seconds

Changes in Soil Properties Related to Soil Function due to Chemical Spills with Strong Acid and Base (강산 및 강염기 토양 유출에 따른 토양의 생태기능 관련 토양특성 변화)

  • Jeon, Inhyeong;Jung, Jae-Woong;Nam, Kyoungphile
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.193-199
    • /
    • 2017
  • In this study, changes of soil properties including soil texture, specific surface area, organic matter content, pH, cation exchange capacity and exchangeable cations content were investigated in response to strong acid or base accident. The properties changed significantly when the soil reacted with 10 M HCl or 1 M NaOH (i.e., when one gram of soil received 50 and 5 mmol of HCl or NaOH), respectively. When the soil reacted with 10 M HCl or 1 M NaOH solution, soil texture changed from sandy loam to loamy sand and specific surface areas decreased from $5.84m^2/g$ to 4.85 and $1.92m^2/g$, respectively. The soil organic matter content was reduced from 3.23% to 0.96 and 0.44%, and the soil pH changed from 5.05 to 2.35 and 10.65, respectively. The cation exchange capacity decreased from 10.27 cmol/kg to 4.52 and 5.60 cmol/kg, respectively. Especially, high concentrations of $Al^{3+}$ or $Na^+$ were observed in acidic or basic spills, respectively, which is likely to cause toxicity to terrestrial organisms. The results suggest that restoration of soil properties, as well as soil remediation, needs to be carried out to maintain the soil function in chemical spill sites.

Effect of soil stabilizer on the bioavailability of arsenic in paddy soil (안정화제가 논토양 내 비소의 생물유효도에 미치는 영향)

  • Ji-Hyock Yoo;Hui-Seon Kim;Mi-jin Kim;Jung-Ok Woo;Ho-yang Choi;Sung-Chul Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.349-355
    • /
    • 2022
  • In this study, we sought to identify a soil stabilizer that can be applied to paddy fields vulnerable to arsenic (As) pollution. To this end, we conducted a pot experiment in which we evaluated the effects of different stabilizers on the bioavailability of As in paddy soil. As candidate stabilizers, we assessed calcium superphosphate (CSP), sulfur, and steel slag, which were applied at the rates of 0.7 and 1.4, 0.1 and 0.2, and 7.0 and 14.0 Ma ha-1, respectively. On day 67 after rice transplantation, we detected significantly lower concentrations of As in the solutions of paddy soil treated with 1.4 Ma ha-1 CSP (96.9 ㎍ L-1) and 0.2 Ma ha-1 sulfur (207.2 ㎍ L-1) compared with the As concentrations in control (314.5 ㎍ L-1) and steel slag-treated (268.6-342.4 ㎍ L-1) soil. Compared with the As concentrations in control brown rice (0.16 mg kg-1), concentrations in brown rice were lowest in the pots treated with 1.4 Ma ha-1 CSP (0.09 mg kg-1). Furthermore, in response to CSP treatments, we detected increases in the weight of rice grains (50.0-50.4 g/pot) compared with the control (40.4 g/pot) and other treatments (26.9-48.1 g/pot), which we speculate could be attributed to the reduction in As toxicity to rice owing to a decline in soil solution As contents and the fertilization effect of the CSP treatment. Collectively, our findings indicate a high-level application of CSP (1.4 Ma ha-1) to paddy soil has a comparatively beneficial effect in mitigating the bioavailability of As.

A Study of Influence Factors for Immobilizing Heavy Metals in Contaminated Soil (중금속으로 오염된 토양의 고정화 영향인자에 관한 연구)

  • Hwang, An-Na;Na, Seung-Min;Khim, Jee-Hyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2007
  • Soil contamination by heavy metals was environmental concern due to its effect on human. In this study, monopotassium phosphate $(KH_2PO_4)$ used as phosphate source to remediate the contaminated soil with heavy metals and factors such as reaction time, initial concentration and pH of phosphate solution, species of heavy metal (lead, cadmium, zinc) and particle size were controlled. Heavy metals were removed in the order Pb > Zn > Cd and the maximum effectiveness was achieved for Pb. The removal efficiency of lead was from 95% to 100% and occurred rapidly occurred during 10 minutes. Mechanism of lead immobilization is dissolution of phosphate and the forming of a new mineral with phosphate having extremely low solubility.

Estimation of Chemical Forms of Phosphate Released from the Paddy Soils with Different Effect of Phosphate Application (인산비옥도(燐酸肥沃度)가 상이(相異)한 답토양(畓土壤)에서 환원용출(還元溶出)되는 인산형태(燐酸形態)의 추정(推定))

  • Hong, Jung-Kuck
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.2
    • /
    • pp.89-94
    • /
    • 1982
  • 1. Solubility diagram was used to estimate Chemical form of the Soil phosphates which supply phosphorus into soil solutions under submerged condition with soils originated from granite and basalt rocks. The granite origin soils with different amounts of available phosphorus have no effect of phosphate application on rice yield, while the basalt origin soil has the big effect. 2. Almost same pattern of change in pH and concentrations of phosphorus and cations in the soil solutions during the submerging period was. shown. Almost no difference in the values was recognized between NPK and NK treatments of the granite origin soils, but the difference of the basalt origin soil was recognized. 3. it was estimated from solubility diagram that phosphorus concentration in the soil solutions was governed by phosphate applied and variscite in the soils for the early stage of submerging period, and then it became to be governed by vivianite in the soils.

  • PDF

Arsenic Movement in the Soils around a Closed Zinc Mine (폐 아연 광산 주변 토양에서 비소의 이동양상)

  • Seo, Young-Jin;Choi, Jyung;Kang, Yun-Ju;Park, Man;Kim, Kwang-Seop;Lee, Young-Han;Komarneni, Sridhar
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • The sediments and soils around a mine are likely to be exposed to contamination of arsenic (As) through mining operations. In this study, the factors associated with As movement in soils around a closed zinc (Zn) mine were evaluated by the relationship of As distributions to physico-chemical properties of soils. A sequential extraction scheme, based on a soil P fractionation, was used to assess the As distributionsin solid phases. A significant difference in As distributions was found between paddy and upland soils. While As contents of paddy soils increased with soil depth, those of upland soils decreased with soil depth. In upland soils, As showed additional significant relationships to oxides of Si, Al and Fe. Although a major fraction of As in soils was found to be in the NaOH extractable fraction, As exhibited highly significant relationship to the Zn species that apparently originated from the mine. Therefore, As mobility around Zn mine seems to be governed by mass flow of the particulates containing As-associated Zn in paddy soils, whereas retention reactions such as adsorption, complexation, and precipitation seem to predominate in upland soils.

Vertical Distribution of Heavy Metals in Paddy Soil Near Abandoned Metal Mines (폐금속광산 주변 논토양 중 중금속의 수직분포 특성)

  • Jung, Goo-Bok;Kim, Won-Il;Park, Kwang-Lai;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.297-302
    • /
    • 2001
  • To compare the relationship between the vertical distribution of heavy metals in paddy soil and soil pH near four abandoned metal mines, 40 paddy surface soils $(0{\sim}15\;cm)$ and 12 soils with soil depths ($0{\sim}20$, $20{\sim}40$, $40{\sim}60$, $60{\sim}80$ and $80{\sim}100$ cm) were collected. Both total and extractable heavy metal contents in soils were analyzed after acid digestion $(HNO_3:HClO_4:H_2SO_4)$ and 0.1 N-HCl extraction, respectively. The 0.1 N-HCl fraction ratio over total contents of Cd, Cu, Pb, and Zn were 57, 30, 23, and 19% respectively. Vertical distribution of heavy metals varied considerably among the different mines. In Choil mine, there was no difference in concentrations of all the metals with soil layers. However, Cu and Pb contents in Gahak mime were high at $0{\sim}20\;cm$ depth, and Zn was high at $0{\sim}40\;cm$ depth. In Sinyemi mine, Cd and Cu contents were high at $0{\sim}40\;cm$ depth. Cd, Cu, and Pb contents in Okcheon mine were high through all soil profiles up to 100 cm soil depth. The 0.1 N-HCl fraction ratio over total contents of heavy metals with soil layers were very high at $0{\sim}20\;cm$ depth. As soil depth increased, fraction ratio of heavy metals decreased at the high soil pH (Gahak, Sinyemi, and Choil mines). However, the ratios of Cd, Cu, and Pb in Okcheon mine, having a relatively lower soil pH than other sites, were relatively similar through all the soil profiles up to 100 cm soil depth. Therefore, it was estimated that the mobility and availability of heavy metals in soils were affected by soil pH.

  • PDF

Long-Term Sludge Application on Extractable Contents of Copper in Soils (Sludge 를 장기처리(長期處理)한 토양중(土壤中)에서 추출물질종류(抽出物質種類)에 따른 Cu 의 함량(含量))

  • Kim, Seong-Jo;Baek, Seung-Hwa;Han, Goang-Lae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.2
    • /
    • pp.116-121
    • /
    • 1989
  • An experiment on movements of copper in soils was conducted to evaluate the effectiveness of several soil extractants in predicting to be possibly the plant availability of copper in soils. Soil samples were taken six, from Las Virgines loam that the samples naturally included high contents of heavy metals near Los Angeles, Greenfield sandy loam and IDomino Loam that received 22.5, and $45.0mg.\;ha^{-1},\;yr^{-1}$ of composted sludge from Los Angeles from 1975 to 1983, respectively. Copper in soils were extracted with $4M\;HNO_3$, 0.1M HCl, 0.5M DTPA-0.1M TEA, 0.5M EDTA-0.1M $Ca(NO_3)_2$, and 1M ammonium acetate(pH 7), and analyzed by atomic absorption spectroscopy. The results were as follows: 1. The total copper contents in soil that received $45.0mg.\;ha^{-1},\;yr^{-1}$ of composted sludge were higher than that received $22.5mg.\;ha^{-1}.yr^{-1}$, regardless of soil samples. 2. The ratios of extractable copper contents with EDTA, DTPA, 0.1M HCl and 1M ammonium acetate to total copper contents extracted with 4M $HNO_3$ of long-term sludge applications were larger than those of natural, sludge-nontreated soils. 3. Statistically significant increase in total copper contents was found in the increasing values of multipling CEC, or OM% by R, ratio of extractable copper contents to those by 4M $HNO_3$ extraction as total copper contents in soils.

  • PDF

Removal of Phenanthrene by Electrokinetic-Fenton Process in a 2-dimensional Soil System (동전기-펜턴 공정을 이용한 2차원 토양 정화장치에서의 phenanthrene 제거)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.11-17
    • /
    • 2005
  • Characteristics of phenanthrene removal in the Electrokinetic (EK)-Fenton process were investigated in a 2-dimensional test cell in a viewpoint of the effect of gravity and electrosmotic flow (EOF). When the constant voltage of 100 V was applied to this system, the current decreased from 1,000 to 290 mA after 28 days, because soil resistance increased due to the exhaustion of ions in soil by electroosmosis and electromigration. Accumulated EOF in two cathode reservoirs was 10.3 L and the EOF rate was kept constant for 28 days. At the end of operation, the concentration of phenanthrene was observed to be very low near the anode and increased in the cathode region because hydrogen peroxide was supplied from anode to cathode region following the direction of EOP. Additionally, the concentration of phenanthrene decreased at the bottom of the test cell because the electrolyte solution containing hydrogen peroxide was largely transported toward the bottom due to a low capillary action in the soil with high porosity. Average removal efficiency of phenanthrene by EK-Fenton process was 81.4% for 28 days. In-situ EK-Fenton process would overcome the limitations of conventional remediation technologies and effectively remediate the contaminated sites.

Synthesis and Characterization of Layered Copper Hydroxides in Highly Concentrated Solution (고농도 용액에서 Layered Copper Hydroxides의 합성 및 특성)

  • Nam, Dae-Hyean;Choi, Choong-Lyeal;Kim, Kwang-Seop;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.872-879
    • /
    • 2010
  • Layered copper hydroxides [LCHs, $Cu_2(OH)_3{\cdot}NO_3$] has the agricultural potentials as a fungicide because of its high crystallinity, excellent anion exchange capacity, and its regular layered particle size. The study, for the first time, has synthesized LCHs in highly concentrated solution and evaluated its physicochemical properties including the crystallinity and suspension stability. Optimal synthetic condition of LCHs was determined by crystallinity and stability of suspension as follow; 1) concentrations of $Cu(NO_3)_2$ and NaOH solutions were 3.0 M respectively, 2) reaction temperature and solution pH were $25^{\circ}C$ and 6.0, respectively, and 3) aging time after reaction was 2hr. Crystallinity of LCHs enhanced with increase in pH up to 9.0. Whereas, stability of suspension was decrease by increase in crystal size. Especially, increase in reaction temperature decreased stability of suspension. XRD patterns and SEM images exhibited that LCHs had regular layered particle size with 0.2~0.8 ${\mu}m$ and high crystallinity in optimal synthetic condition. The particle size was increased with increase in reaction temperature and pH. These results showed that LCHs synthesized in highly concentrated solution exhibited high stability of suspension as well as high crystallinity suitable to their potential as a fungicide.

Persistence of the Insecticide Clothianidin in Paddy and Upland Soils (논 및 밭토양 중 살충제 Clothianidin의 잔류특성)

  • Choi, Young-Joon;Kwon, Chan-Hyeok;Yun, Tae-Yong;Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.290-297
    • /
    • 2014
  • BACKGROUND: The current study purposed to analyse the dissipation levels of a neonicotinoid insecticide and clothianidin in paddy and upland soils and clarify the effects of soil moisture on degradation and persistence of the insecticide. METHODS AND RESULTS: In order to achieve the research purposes, clothianidin 8% SG was applied to the paddy and upland fields at the rate of 0.024 kg a.i./10a, while the analytical standard was treated at 0.25 mg/kg soil under laboratory conditions. Based on the multiple first-order kinetics, total clothianidin in soils was dissipated with $DT_{50}$ of 6.7-16.1 and 6.9-8.2 days in the paddy and upland fields, respectively, whereas the figures under the laboratory condition became larger showing 56.3 and 19.6 days. CONCLUSION: As affected by soil moisture, some differences in degradative pathways were observed. Flooding of soil caused evidently demethylation and delayed cyclization of a major metabolite, thiazolylmethylguanidine (TMG) and methylaminoimidazole(MAI), compared to the aerobic upland condition. More than 80% and 50% of the parent compound was dissipated by the 24th day after the final application in both soils and, transformation products had constituted most of soil residues after that.