• Title/Summary/Keyword: 토양세척기법

Search Result 37, Processing Time 0.023 seconds

Sequential Washing Techniques for Arsenic-Contaminated Soils near the Abandoned Iron-Mine (폐 철광산 주변 비소로 오염된 토양에 대한 연속 세척기법의 적용)

  • Hwang Jung-Sung;Choi Sang-il;Han Sang-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Several tests were conducted to determine the optimum operational conditions of soil washing techniques for floe-forming arsenic-contaminated soils, collected from D abandoned Iron-mine in Korea. The optimum cut-off size was 0.15 mm $(sieve\;\#100)$, about $94\%$ of the mass of soils. Both sodium hydroxide and hydrochloric acid were effective to remove arsenic and the optimum mixing ratio (soil [g] : washing solution [mL]) was 1:5 for both washing agents. Arsenic concentrations, determined by KST Methods, for the dried floe solids obtained from flocculation at pH 5-6 were $990\~1,086\;mg/kg$ dry solids, which were higher concentrations than at the other pH values. Therefore, batch tests for sequential washings with or without removing floc were conducted to find the enhancement of washing efficiencies. After removing floe with 0.2 M HCl, sequential washings of 1 M HCl followed by 1 M NaOH showed the best results (15 mg/kg dry soil). The arsenic concentrations of washing effluent from each washing step were about $2\~3\;mg/L$. However, when these acidic and basic effluents were mixed together, arsenic concentration was decreased to be less than $50\;{\mu}g/L$, due to the pH condition of coagulation followed by precipitation for arsenic removal.

Application of Soil Washing Technology for Arsenic Contaminated Soil (비소로 오염된 토양에 대한 토양세척기법의 적용성 연구)

  • Hwang, Jung-Sung;Choi, Sang-Il;Jang, Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.104-111
    • /
    • 2004
  • Several tests were conducted to optimize design parameters of soil washing technique for arsenic contaminated tailings and soils. Arsenic contaminated tailings and soils have been sampled from the N nine, Kwangwondo and the K mine, Kyungsangbukdo, respectively. According to the result of sequential extraction procedure, total arsenic concentrations were 21,028 $\pm$ 190, 443$\pm$7, and 37$\pm$3 mg/kg, for mine tailings, dry field, and river sedimentary soil, respectively. The subtotal of weakly bonded and easily releasable arsenic concentrations which were 2,284$\pm$100 (10.9%), 151$\pm$5 (34.0%), 15$\pm$3 (39.5%)mg/kg for mine tailings, dry field, and river sedimentary soil, respectively. Kinetics of arsenic extraction using NaOH showed that arsenic was extracted more than 90% after 6 hours for all samples. The optimized concentration of NaOH were 200 mM for all samples while the optimized dilution ratio were different to have 1:10 (mine tailings) and 1:5 (dry field, river sedimentary soil), respectively. Results of sequential soil washing tests using NaOH showed that arsenic concentrations obtained by Korean Standard Test Procedure were decreased to meet the regulation for both river sedimentary soil and dry field while they were not decreased largely for mine tailings, even though NaOH had much higher efficiencies of arsenic extraction than other extractants.

A Study on the Application of Soil Washing Technology for HOCs-Contaminated Soil Using Mixed Surfactants (소수성 유기오염물질로 오염된 토양에 대한 혼합 계면활성제를 이용한 토양세척기법의 적용성 연구)

  • Choi, Sang-Il;Lee, Jai-Young;Jang, Min
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.103-108
    • /
    • 1997
  • A series of batch tests were conducted to evaluate the design parameters for the application of soil washing techniques to the hydrophobic organic compounds (HOCs)-contaminated soil using mixed surfactants. Because the mixed surfactants form different structures of molecular aggregates from single surfactant, they were applied to improve the washing efficiency. Kinds of surfactants added, mixing ratio, and total concentration of mixed surfactants were evaluated. The uncontaminated soil was obtained from a country hill near Nock-Chun Station in Seoul. The portion of soil passing #4 (4.75 mm) sieve was used. The pH, organic contents and cation exchange capacity were 4.4, 1.6% and 4.08 meq/100 g, respectively The soil was artificially contaminated by n-dodecane. The 5% solution of OA-5 and OA-14 (1:1) showed 86% washing efficency. The 4% solution of SDS and OA-5 (1:1) showed 95% washing efficiency.

  • PDF

Application of Soil Washing Technology to the Soil Contaminated by Heavy Metals (중금속에 의해 오염된 토양에 대한 토양세척기법의 적용성 연구)

  • 정동철;이지희;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.53-60
    • /
    • 1997
  • A series of batch and lab-scale pilot tests were conducted to optimize the design parameters for the application of soil washing techniques to the soil contaminated by heavy metals. Cu, Pb, and Zn were selected as target heavy metals. The concentrations of Cu, Pb, and Zn were 500mg/kg dry soil, 1, 000mg/kg dry soil, and 500mg/kg dry soil, respectively. Citric acid and oxalic acid were used for the extractants. In the batch tests, the extraction efficiencies for Cu, Pb, and Zn were 79%, 72%, 72%, respectively. The proper extractant concentration and dilution ratio(weight/volume) for Cu and Pb were turned to be citric acid 50mM and 1:5, respectively. The extraction efficiencies were enhanced with the addition of 1~2% OA-5 or SDS. From pilot scale tests for Pb, first stage and second stage of soil washing resulted in the extraction efficiency of 59% and 78%, respectively.

  • PDF

A Study on the Cleanup Process of HOCs-Contaminated Soil by Ex-situ Soil Washing Technology (Ex-situ 토양세척기법에 의한 소수성 유기오염물질로 오염된 토양의 정화에 관한 연구)

  • Choi, Sang-Il;Ryoo, Doo-Hyun;Jang, Min
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.99-107
    • /
    • 1997
  • In this study, a series of batch-scale tests were conducted to optimize the design parameters for the application of soil washing techniques to the hydrophobic organic compounds(HOCs)-contaminated soil and to find the effective methods for the recovery of surfactants from washing effluent by using solvent. Several nonionic surfactants (polyoxyethylene oleyl ester) and sophorolipid were applied to the artificially contaminated soil (4,000 mg n-dodecane/kg dry soil). The effects of washing time, concentration of surfactant solution, dilution ratio, and temperature on washing efficiencies were examined. Hydrophile-liphophile balance (HLB) number was proven to be one of the important parameters for soil washing. The HLB numbers of OA-5 and sophorolipid are too low to form a stable soil-water emulsion. They showed very low washing efficiencies less than 10e1o. If HLB number is in the proper range to form a stable soil-water emulsion, surfactant having higher solubility for HOCs shows higher washing efficiency. OA-14 having higher HLB number than OA-9 formed more stable soil-water emulsion. But its washing efficiency was about 20% due to a lower molar solubility ratio (MSR) than OA-9. OA-9, which forms a stable soil-water emulsion and has comparatively high sotubility for HOCs, showed about 60% washing efficiency by itself. To recover anthracene effectively from OA-9 washing effluent by using benzene as an organic solvent, desirable temperature and pH were $30^{\circ}C$ and 2, respectively.

  • PDF

A Study on the Full-scale Soil Washing Process Improved by Multi-stage Continuous Desorption and Agitational Desorption Techniques to Remediate Petroleum-contaminated Soils (현장규모의 유류오염토양 세척공법에 다단연속탈착 및 교반탈착기법을 이용한 세척공정 성능향상에 관한 연구)

  • Seo, Yong-Sik;Choi, Sang-Il;Jang, Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.81-87
    • /
    • 2008
  • In accompany with the transfer of US army bases, recent surveys reported serious contamination of soils by the release of petroleum from storage facilities and heavy metals accumulated in rifle-ranges. These problems have made an increased concerns of cleanup technology for contaminated soils. In this study, a full-scale soil washing process improved by multistage continuous desorption and agitational desorption techniques was examined for petroleum-contaminated soils obtained from three different remedial sites that contained 29.3, 16.6, and 7.8% of silt and clay, respectively. The initial concentrations of total petroleum hydrocarbon (TPH) were 5,183, 2,560, and 4,860 mg/kg for each soil. Pure water was applied to operate washing process, in which water used for washing process was recycled 100% for over 6 months. The results of full-scale washing tests showed that the TPH concentrations for soils (> 3.0 mm) were 50${\sim}$356 mg/kg (85.2${\sim}$98.2% removal rates), regardless of the contents of silt and clay from in A, B and C soil, when the soils were washed at 3.0 kg/$cm^2$ of injection pressure with the method of wet particle separation. Based on the initial TPH concentration, the TPH removal rates for each site were 85.2, 98.2 and 89.9%. For soils in the range of 3.0${\sim}$0.075 mm, the application of first-stage desorption technique as a physical method resulted 834, 1,110, and 1,460 mg/kg of TPH concentrations for each soil, also additional multi-stage continuous desorption reduced the TPH concentration to 330, 385, and 245 mg/kg that were equivalent to 92.4, 90.6, and 90.1% removal rates, respectively. The result of multi-stage continuous desorption for fine soil (0.075${\sim}$0.053 mm) were 791, 885, and 1,560 mg/kg, and additional agitation desorption showed 428, 440, and, 358 mg/kg of TPH concentrations. Compared with initial concentration, the removal rates were 92.0, 93.9 and 92.9%, respectively. These results implied we could apply strategic process of soil washing for varies types of contaminated soils to meet the regulatory limit of TPH.

Optimal Surfactant Screening by Model Application for Soil Washing Process (오염토양 세척공정에서 모델링을 통한 최적 계면활성제의 선별)

  • 우승한;박종문
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.61-73
    • /
    • 2003
  • A model describing the distribution of contaminants in soil/water systems for the application of soil-washing technology using surfactant was developed. The model simulation was conducted for screening the best surfactant, evaluating the effect of water dose, and optimizing soil-washing methodology. Naphthalene, phenanthrene, and pyrene as target compounds and Triton X-l00, Tergitol NP-10, Igepal CA-720, and Brij 30 as surfactants were used in the model simulations. The washing efficiency was not greatly enhanced by increasing water dose with the same total surfactant dose. The approach of successive washings was more efficient than a single washing with the same amount of water and surfactant. Equal allotment of the amount of water and surfactant was the best condition for the successive washings. The model can be applied for the optimal design of the soil washing process without extra experimental efforts.