• Title/Summary/Keyword: 토양물리적 특성

Search Result 657, Processing Time 0.026 seconds

Temporal and Spatial Characteristics of Sediment Yields from the Chungju Dam Upstream Watershed (충주댐 상류유역의 유사 발생에 대한 시공간적인 특성)

  • Kim, Chul-Gyum;Lee, Jeong-Eun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.887-898
    • /
    • 2007
  • A physically based semi-distributed model, SWAT was applied to the Chungju Dam upstream watershed in order to investigate the spatial and temporal characteristics of watershed sediment yields. For this, general features of the SWAT and sediment simulation algorithm within the model were described briefly, and watershed sediment modeling system was constructed after calibration and validation of parameters related to the runoff and sediment. With this modeling system, temporal and spatial variation of soil loss and sediment yields according to watershed scales, land uses, and reaches was analyzed. Sediment yield rates with drainage areas resulted in $0.5{\sim}0.6ton/ha/yr$ excluding some upstream sub-watersheds and showed around 0.51 ton/ha/yr above the areas of $1,000km^2$. Annual average soil loss according to land use represented the higher values in upland areas, but relatively lower in paddy and forest areas which were similar to the previous results from other researchers. Among the upstream reaches, Pyeongchanggang and Jucheongang showed higher sediment yields which was thought to be caused by larger area and higher fraction of upland than other upstream sub-areas. Monthly sediment yields at the main outlet showed same trend with seasonal rainfall distribution, that is, approximately 62% of annual yield was generated during July to August and the amount was about 208 ton/yr. From the results, we could obtain the uniform value of sediment yield rate and could roughly evaluate the effect of soil loss with land uses, and also could analyze the temporal and spatial characteristics of sediment yields from each reach and monthly variation for the Chungju Dam upstream watershed.

Microbial degradation and other methods for accelerated degradation the Herbicide Imazapyr (제초제 Imazapyr 의 미생물에 의한 분해 및 기타 방법에 의한 분해 촉진)

  • Lee, Jae-Koo;Kwon, Jeong-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.5-10
    • /
    • 1998
  • The microbial degradation, photosensitizer-mediated photolysis, and bioceramic- accelerated degradation of the herbicide imazapyr were investigated using four types of soil. 1. Seven strains of microorganisms isolated from the soil A and the active sludge collected from the waste water disposal plant in CheongJu did not give any distinct degradation products in pure culture. When imazapyr (10ppm) was incubated for 14days with each of the 6strains of the known bacteria, they did not produce any noticeable products, either, suggesting that imazapyr was degraded very little by microorganisms in aqueous media. Meanwhile, when 50ppm of imazapyr was incubated in soil A and B for 6months, a degradation product of m/z 279 was detected. It turned out to be 2-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]nicotinic acid, which was formed by the hydrolytic cleavage of the imidazolinone ring and by tautomerism. When imazapyr was exposed to sunlight, degradation rates were 14.6% under the control and 66.0, 76.5, 26.7, and 90.0% in the presence of PS-1 (100ppm), PS-1 (200ppm), PS-2(100ppm), and PS-3(100ppm), respectively, and a degradation product of m/z 149 was tentatively identified in the treatment of PS-1. 2. When soil C and D treated with bioceramic were incubated for 7weeks, the $^{14}C$-activities of $^{14}CO_2$ evolved were 2.03 and 1.12% of the originally applied ones, respectively, whereas those in control soils without bioceramic were 1.88 and 0.82% showing no significant defferences.After 5 weeks, however,the differences in the amounts of $^{14}CO_2$ between the two treatments increased gradually, suggesting the bioceramic effect.

  • PDF

Springtime Distribution of Inorganic Nutrients in the Yellow Sea: Its Relation to Water Mass (수괴특성에 따른 춘계 황해의 영양염 분포 특성)

  • Kim, Kyeong-Hong;Lee, Jae-Hak;Shin, Kyung-Soon;Pae, Se-Jin;Yoo, Sin-Jae;Chung, Chang-Soo;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Inorganic nutrient concentrations in relation to springtime physical parameters of the Yellow Sea were investigated during April 1996. Three major water masses, i.e., the Yellow Sea Warm Current Water (YSWC), Coastal Current Water (CCW) and Changjiang River Diluted Water (CRDW), prevailed in the study area. Water masses were vertically wel1 mixed throughout the study area, and nutrients were supplied adequately from bottom to surface layer. As result of ample nutrients supplied by vertical mixing together with progressed daylight condition, springtime phytoplankton blooms were observed, which was responsible for the depletion of inorganic nutrients in surface water column. Low nutrients concentration in bottom water of the central Yellow Sea (Stn. D9; nitrate: <2 ${\mu}$M, phosphate: <0.3 ${\mu}$) was associated with the entrance of YSWC which is characterized by high temperature and salinity. Influenced by runoff and vertical tidal mixing, CCW with high nutrient concentrations probably associated with China and Korea coastal waters with high nutrients concentration. For the local scale of inorganic nutrient distribution, nutrient transfers from coast to central areas were limited due to restriction imposed by tidal fronts (Stn. D6) and thus affected the horizontal nutrient profiles. Relatively high phytoplankton biomass was observed in the tidal front (Chl-${\alpha}$=12.38 ${\mu}$gL$^{-1}$) during the study period. Overall, the springtime nutrient distribution patterns in the Yellow Sea appeared to be affected by: (1) Large-scale influx of YSWC with low nutrient concentrations and CCW with high nutrient concentrations influenced by Korea and China coastal waters; (2) vertical mixing of water mass and phytoplankton distribution; and (3) local-scale tidal front as well as phytoplankton blooms alongthe tidal front.

  • PDF

Physico.chemical Properties of Inorganic Materials Currently Used as Root Medium Components for Crop Production in Korean Plant Factories (국내에서 식물공장용 배지 재료로 유통되는 무기물의 토양 물리화학적 특성)

  • Shin, Bo Kyoung;Son, Jung Eek;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.336-342
    • /
    • 2012
  • Inorganic materials were commonly used as container media in domestic plant factories. Objective of this research was to secure the information in soil physical and chemical properties of inorganic materials such as vermiculites and perlites. To achieve this, 12 gold and silver vermiculites from China, Zimbabwe, and South Africa and 5 perlites from China were collected based on the marketing grades (MG) in particle sizes and analyzed for determination of their characteristics. The percentage of particles larger than $710{\mu}m$, in China perlite MG 3~5 mm, China silver vermiculites MG > 8 mm and MG 3~8 mm were 99.9%, 99.8%, and 99.7%, respectively, which were much higher than 28.4% in China gold vermiculite MG 0.3~1.0 mm, 14.0% in perlite MG < 1.0 mm, and 12.6% of Zimbabwe silver vermiculite MG < 1.0 mm. The container capacities of perlite MG < 1.0 mm and South Africa silver vermiculite MG 0.25~1.0 mm were 72.0% and 71.1%, respectively. The air space in China silver vermiculite MG 3~8 mm was 49.3% which was higher than other materials tested. However, the China gold and silver vermiculites MG 0.3~1 mm had 3.5% and 2.4% in air space indicating that possible problems could occur in soil aeration when they are used for container media. The percentage of easily available and buffering water of China gold vermiculite MG 0.3~1 mm and perlite MG < 1.0 mm were the highest among test materials. The ranges of pH and electrical conductivity were 6.36 to 10.7 and 0.032 to $0.393dS{\cdot}m^{-1}$ in vermiculites and 7.78 to 8.62 and 0.030 to $0.041dS{\cdot}m^{-1}$ in perlite, respectively. The cation exchange capacity of China silver vermiculite MG 0.3~1 mm were $14.7cmol{\cdot}kg^{-1}$ that was 10 times as high as $0.34cmol{\cdot}kg^{-1}$ in perlite MG 1~2.5 mm. The vermiculites had the higher contents of exchangeable cations such as Ca, K, and Na, than those of perlites.

The Characteristics of Runoff for Hwacheon dam watershed (화천댐 상류유역의 유출거동 특성)

  • Kim, Nam-Won;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1069-1077
    • /
    • 2009
  • Lately, it is an important concern in water resources research to maintain a stable water supply according to a future climate change and an increase in water use. In Han-River basin, approximately 10 % of water resources that is provided the capital region (Gyeonggi, Seoul etc.) has been reduced as a consequence of the construction of Imnam Dam (storage volume: 27 billion $m^3$) located in the upper Hwacheon Dam upstream area. Therefore, streamflows have decreased in Bukhangang basin, but it could not be evaluated quantitatively. In this study, SWAT-K which is the physically based long-term runoff simulation model, was used in order to evaluate the effect of Imnam Dam on the reduced inflow to Hwacheon Dam according to the change of hydrological condition in the upstream area of Hwacheon Dam. For the model input data of North Korea area, meteorological data of GTS (Global Telecommunication System) were used, and soil maps by FAO/UNESCO (2003) were applied. Temporal variations of water resources is investigated with comparison of observed and simulated inflows at Hawcheon Dam site. Also, annual, monthly, seasonal decreases in water resources were evaluated using the flow duration analysis of simulated streamflows with or without Imnam dam.

Occurrence characteristics and management plans of an ecosystem-disturbing plant, Hypochaeris radicata (생태계교란 식물인 서양금혼초의 발생특성과 관리방안)

  • In-Yong Lee;Seung-Hwan Kim;Yong-Ho Lee;Sun-Hee Hong
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.273-282
    • /
    • 2023
  • Hypochaeris radicata, native to Europe and Eurasia, is a perennial plant of the Asteraceae family. In Korea, H. radicata was reported in 1992, mainly in Jeju Island, and gradually spreading to the inland. It overwinters in the form of a rosette and blooms yellow flowers from May to June. H. radicata propagates by seeds and rhizomes. The germination temperature of the seed is 15/20℃ (day/night), and the rhizome forms a new plant at a depth of 2-3cm in the soil. The roots of H. radicata secrete allelochemicals that inhibit the development of other plants. Some use it as a salad or forage substitute but to a limited extent. However, extensive research on ampicillin contained in H. radicata has been conducted, and its anticancer and anti-inflammatory effects have been recognized. There are only a few methods to manage H. radicata both culturally and physically. In orchards, soil treatments such as oxyfluorfen and diclobenil, or nonselective foliar treatments such as glufosinate-ammonium and glyphosate are used. Notably, there are no known biological control agents.

An Analysis of Land Use Patterns in Riparian Zones for the Geumho River Watershed Management (금호강 유역관리를 위한 수변구역의 토지이용패턴분석)

  • Park, Kyung-Hun;Oh, Jeong-Hak;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.157-165
    • /
    • 2005
  • The purpose of this study is to examine the relationship between land use patterns of riparian zones and water quality in the Geumho River watershed. A GIS database included digital land use maps (1:25,000), stream network extracted from digital topographic maps (1:5,000) and riparian zones maps by multi-buffering method. Pearson's correlation analysis was used to explain the relationship between the environmental conditions of a 30 meter buffer strip on each side and water quality. According to the result of investigation of riparian-level land use patterns, sub-watersheds on the lower Geumho River including Daegu metropolitan city were mainly developed as urban area such as residential, commercial and industrial ones, while sub-watersheds on the middle Geumho River and the main course of Nakdong River, agricultural ones such as a paddy, a dry field and an orchard. Meanwhile, the area-rate of riparian forests which play an important role in filtering nitrogen, phosphorus and sediment was estimated below the average 16%. The proportion of urban area in a 30 meter riparian bufferstrip had a negative correlation with water quality in each sub-watershed. But the proportion of forest area had a positive correlation with water quality. Henceforth, it is necessary to establish landscape planning for preparing and restoring the riparian buffer zones, concerning land form, soil type, the present land use pattern and economic aspects.

  • PDF

Effectiveness of Three Commercial Wood Preservatives against Termite in Korea (주요 국내 사용 방부제 3종에 대한 흰개미 저항 효력)

  • Lee, Hansol;Hwang, Won-Joung;Lee, Hyun-Mi;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.804-809
    • /
    • 2015
  • Since Korea is home to Reticulitermes speratus, a kind of subterranean termites that prefer dark and humid conditions, there have been increasing damages to wooden structures by termites. One noticeable attribute of Korean subterranean termites is that they prefer than Pinus densiflora, the major construction material for Korean traditional houses. And because wide varieties of termites are distributed all over the world, it is not so easy to choose appropriate control methods depending on specific areas. This necessitates careful applications of the following control methods depending on the kinds of termites: fumigation treatment, soil termiticide, preservatives and insect treatment, termite colony elimination system, chemical treatment, and other physical and biological treatment methods. The purpose of this study is to investigate the control effects of environmentally-friendly Alkaline copper quaternary (ACQ), Copper Azole (CuAZ) and Micronized copper quarter (MCQ) on the termites contributing to the damage of wooden structures. It was found in this study that wood with preservative treatment produced a significantly higher termicidal efficacy than untreated wood.

A Review of Geochemical Factors Governing the Phase Transformation of Birnessite (버네사이트 상변화 반응의 지화학적 반응 조절인자 연구)

  • Namgung, Seonyi;Chon, Chul-Min;Lee, Giehyeon
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.545-554
    • /
    • 2017
  • Birnessite is one of the dominant Mn (oxyhydr)oxide phases commonly found in soil and deep ocean environments. It typically occurs as nano-sized and poorly crystalline aggregates in the natural environment. It is well known that birnessite participates in a wide variety of bio/geochemical reactions as a reactive mineral phase with structural defects, cation vacancies, and mixed valences of structural Mn. These various bio/geochemical reactions control not only the fate and transport of inorganic and organic substances in the environment, but also the formation of diverse Mn (oxyhydr)oxides through birnessite transformation. This review assessed and discussed about the phase transformation of birnessite under a wide range of environmental conditions and about the potential geochemical factors controlling the corresponding reactions in the literature. Birnessite transformation to other types of Mn (oxyhydr)oxides were affected by dissolved Mn(II), dissolved oxygen, solution pH, and co-existing cation (i.e., $Mg^{2+}$). However, there still have been many issues to be unraveled on the complex bio/geochemical processes involved in the phase transformation of birnessite. Future work on the detail mechanisms of birnessite transformation should be further investigated.

OECD High Production Volume Chemicals Program: Ecological Risk Assessment of Copper Cyanide (대량생산화학물질 초기위해성평가: 시안화구리의 초기 생태위해성평가)

  • Baek, Yong-Wook;Kim, Eun-Ju;Yoo, Sun-Kyoung;Ro, Hee-Young;Kim, Hyun-Mi;Eom, Ig-Chun;Kim, Pil-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.272-279
    • /
    • 2011
  • Copper cyanide is a chemical produced in large quantities with 2,500 tonnes being produced in 2006. It is mainly used for electroplating copper, particularly alkali-Cu plate and brass plating. The purpose of this study is to reassess the physicochemical properties and environmental fate of copper cyanide based on reliable data and and to conduct an ecotoxicity test according to the OECD test guidelines as an initial environmental risk assessment (need to state where this was done). Metal containing inorganic substances are not subject to degradation, biodegradation or hydrolysis. Aquatic toxicity tests of copper cyanide were conducted according to OECD test guideline 201, 202 and 203 for green algae, daphnia, and fish, respectively. The following acute toxicity test results were obtained for aquatic species: 0.089 mg $L^{-1}$ (Algae, 72 Hr-$EC_{50}$); 0.21 mg $L^{-1}$ (flea, 48 Hr-$LC_{50}$); 0.62 mg $L^{-1}$ (Fish, 96 Hr-$ErC_{50}$). The chemical possesses properties indicating a hazard for the aquatic environment (acute toxicity in fish, daphnia and algae below 1.0 mg $L^{-1}$). As a result of this study, copper cyanide has become a candidate for detailed risk assessment. Countries that produce this chemical in significant quantities are recommended to perform specific assessments.