• Title/Summary/Keyword: 토양광물

Search Result 435, Processing Time 0.03 seconds

Soil Mineralogy (토양광물)

  • Jang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31
    • /
    • pp.36-44
    • /
    • 1998
  • 우리 나라에서 토양의 점토광물에 관한 최초의 연구는 1958년 김제지방의 답 토양에 관한 연구로 (Dewan, 1958)시작되었다. 1960년대 시작하여 1970년대 까지는 주로 토양점토광물의 동정이 이루어 졌다. 점토광물의 동정(同定)에 사용된 잔적토(殘積土)(Residual Soil)로는 화강암(花崗岩), 화강편마암(花崗片麻岩), 현무암(玄武岩), 석회암(石灰岩), 혈암(頁岩), 제(第)3기층(紀層), 홍적층(洪積層) 유래 토양과 토양종류별(土壤種類別)로는 과부식회색토(寡腐植灰色土), 염류토(鹽類土), 충적토(沖積土), 적황색토(赤黃色土), 화산회토(火山灰土), 퇴적토(堆積土), 갈색토(褐色土), 암쇄토(岩碎土), 저위생산답(低位生産畓)이였으며, 토양점토광물(土壤粘土鑛物)과 작물수량성(作物收量性) 관계에 관한 연구가 실시되었다. 1980년대에 들어와서는 토양중의 1차광물과 점토광물의 풍화에 대한 안정도와 1차광물의 동정이 행해졌으며, 이밖에 Kaolinite 입자의 전하에 관한 연구등 점토광물의 흡착과 활성 연구, 점토광물의 토양개량재로서의 흡착과 화학적 특성 변화 연구와 점토광물의 토양개량 시용효과에 관한 연구가 행해졌다. 1990년대에 들어와서는 토양 중의 1차광물과 점토광물의 정량에 대한 자료가 축척되었고, 토양의 풍화에 대한 안정성과 생성기작, Zeolite와 새로운 광물이 합성되었다. 또한 합성광물을 이용한 농업과 산업광물로의 응용성 환경 산업에서의 적용가능성에 대한 평가가 시도되었다. 토양의 점토광물의 조성에 관한 연구는 토양 모재를 중심으로 이루어졌는데, 화강암(花崗岩)에서는 Halloysite, 화강편마암(花崗片麻岩)에서는 Kaolinite, Metahalloysite, Illite, 산성암(酸性岩)에서는 Kaolinite, Venrmiculite와 Chlorite의 중간광물, 현무암(玄武岩)에서는 Illite, Kaolinite, Vermiculite, 석회암(石灰岩)에서는 Vermiculite-Chlorite 중간광물, Kaolinite와 Illite, 혈암(頁岩)에서는 Kaolinite, Halloysite, Illite 외 Vermiculite-Chlorite, 화산회토(火山灰土)에서는 Allophane이 주광물이었다. Soil Taxonomy와 토양광물과의 관계에서, 답 토양에서는 Entisols의 주점토광물은 2:1형과 1:1형 광물이지만 Inceptisols와 Alfisols에서는 Halloysite가 대부분이다. 밭 토양의 경우는 Alfisols의 주점토광물은 Vermiculite, Illite, Kaolinite이었고, Ultisols에서는 Vermiculite-Chlorite 중간광물이었다. 산림토양에서는 Inceptisols중에서 Andept는 Allophane, Alfisols에서는 2:1 광물이지만, Ultisols에서는 Halloysite이다. 모재별 조암 광물의 풍화와 점토광물의 생성과정에서 화강암(花崗岩)과 화강편마암(花崗片麻岩)의 장석류(長石類)는 kaoline광물로, 이 밖의 운모광물(雲母鑛物), 녹니석(綠泥石), 각섬석(角閃石), 휘석(輝石)으로부터 생성된 illite, chlorite, vermiculite는 풍화중간에 혼층단계(混層段階)를 거쳐서 kaoline 광물로 풍화된다. 석회암(石灰岩) 토양의 smectite가 Mg농도가 높은 토양용액으로부터 침전되어 생성되었거나 운모 또는 chlorite에서 유래된 vermiculite의 변성작용에 의해 생성되고, 혈암(頁岩)토양의 점토에 illite가 주로 풍화에 저항성이 큰 미립자의 함수백운모(含水白雲母)로부터 유래되며, 현무암(玄武岩) 중의 장석류(長石類)는 kaoline광물로, 휘석(輝石)은 chlorite${\rightarrow}$illite의 풍화과정을 거친다. Zeolite, 함불석 Bentonite, Bentonite 등 우량점토 광물이 분포과 광물조성, 이화학적 특성이 조사되었고, 토양의 물리적, 화학적 성질의 개선을 필요로 하는 토양의 개량을 위해서 Bentonite, Zeolite, Vermiculite 등의 토양 개량재(改良材)로서의 기초연구와 이들 개량재 시용효과에 관한 연구 등이 주로 논토양에서 수행되었다. 점토광물과 수량관계를 보면 Montmorillonite를 주점토광물로 함유된 답 토양의 수도수량이 1:1 광물을 주점토광물로 함유하고 있는 토양에서의 수도수량 보다 높았다. 토양광물에 관한 기초연구(基礎硏究)로서 양이온교환능과 포화이온의 영향, 입자의 전기화학적 성질, 흡탈착 성질, 표면적과 등전점, 해성점토에 대한 압밀점토(壓密粘土)의 변형율(變形率)의 추정 등이 주로 연구되었다. 부가가치가 낮거나 폐기되는 광물을 이용하여 토양개량재 혹은 흡착제를 형성하는 연구가 알카리 처리에 의한 Zeolite 합성에 집중되었다.

  • PDF

Clay Activity and Physico-chemical Properties of Korean Soils with Different Clay Minerals (점토광물 조성이 상이한 토양의 점토활성도와 이화학적 특성)

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won;Hyun, Byung-Keun;Moon, Yong-Hee;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.837-843
    • /
    • 2010
  • This research investigated classification of clay activity degree by different clay mineral components. Based on compositions of different clay and oxide minerals within 390 soil series in Korea, 7 soils were selected to analyze for CEC and specific surface area of clay minerals. As a result, soils were mainly composed with Chlorite originated from sandstone, Smectite originated from Andesite porphyry and combination of Allophane and Ferrihydrite originated from volcanic ash, if the ratio of CEC value to clay content (degree of clay activity) was greater than 0.7. If the degree of clay activity was ranged between 0.3 and 0.7, soils were composed mainly with Kaolin originated from anorthite. Soils with this ratio also was composted with combinations of Kaolin, Illite and Vermiculite originated with river deposits. When the degree of the activity was less than 0.3, soils were commonly red-yellowish color and composed with two different minerals. One type of composition was Kaolin originated from granite and granite gneiss and the soils contained Geothite and Hematite. The other type was composited mainly with Illite and Vermiculite minerals originated from granite. These soils contained Gibbsite, Geothite and Hematite. The degree of clay activity was highly related with CEC and specific surface area. The greater degree of the activity displayed greater values of clay CEC and specific surface area. It is not easy to measure actual quantity and compositions of clay minerals, while the degree of clay activity can be measured from routine soil analyses. As a conclusion, the degree of clay activity may be not just a simple but also powerful tool to estimate physical-chemical properties of soils and to evaluate the soil classification in Korean soils.

Clay Mineral Composition of the Soils Derived from Residuum and Colluvium (잔적 및 붕적모재 토양의 점토광물 특성구명)

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Jung, Sug-Jae;Lee, Gye-Jun;Kim, Myung-Sook;Kim, Sun-Kwan;Lee, Ju-Young;Pyun, In-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.245-252
    • /
    • 2006
  • This experiment was conducted to investigate the distribution and compositions of clay mineral and to replenish the soil classification system in Korea. Soil layer samples were collected from 26 residuum and colluvium soil series out of 390 soil series in Korea, and then analyzed for soil physical and chemical characteristics, mineral and chemical compositions of clay in B horizon soils. Major clay minerals of residuum and colluvium were illite and chlorite in soils originated from the sedimentary rock such as limestone, shale, sandstone and conglomerate; quartz and kaolin in soils originated from rhyolite, neogene deposits, porphyry and tuff; and kaolin and quartz in the soils originated from granite, granite gneiss and anorthosite. Clay minerals in Korean soils were divided into 4 groups: mixed mineral group(MIX) mainly contained with illite, kaolin and vemiculite; kaolin group(KA) with kaolin and illite; chlorite group(CH) with chlorite and illite; and smectite group(SM) with kaolin, illite and smectite. The most predominant clay mineral group was kaolin group(KA) with kaolin and illite; an mixed mineral group(MIX) with illite, kaolin and vemiculite. Cation exchange capacity (CEC) of clay was low in the soils mainly composed with MIX and KA groups and silica-alumina molar ratio of clay was high in the soils composed with SM group

Geochemical and Mineralogical Characterization of Arsenic-Contaminated Soil at Chonam Gold Mine, Gwangyang (광양 초남 금 광산 비소오염 토양의 지화학적 및 광물학적 특성)

  • Kong, Mi-Hye;Kim, Yu-Mi;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.203-215
    • /
    • 2011
  • Geochemical and mineralogical properties of a contamited soil should be taken into account to decide a remediation strategy for a given contaminant because development and optimization of soil remedial technologies are based on geochemical and mineralogical separation techniques. The objective of this study was to investigate the geochemical and mineralogical characteristics of arsenic-contaminated soils. The arsenic-contaminated soil samples were obtained from Chonam gold mine, Gwangyang, Chonnam, Particle size analysis, sequential extraction, and mineralogical analyses were used to characterize geochemical and mineralogical characteristics of the As-contaminated soils. Particle size analyses of the As-contaminated soils showed the soils contained 17-36% sand, 25-54% silt, 9-28% clay and the soil texture were sandy loam, loam, and silt loam. The soil pH ranged from 4.5 to 6.6. The amount of arsenic concentrations from the sequential soil leaching is mainly associated with iron oxides (1 to 75%) and residuals (12 to 91%). Major minerals of sand and silt fractions in the soils were feldspar, kaolinite, mica, and quartz and minor mineral of which is an iron oxide. Major minerals of clay fraction were composed of illite, kaolinite, quartz, and vermiculite. And minor minerals are iron oxide and rutile. The geochemical and mineralogical analyses indicated the arsenic is adsorbed or coprecipitated with iron oxides or phyllosilicate minerals. The results may provide understanding of geochemical and mineralogical characteristics for the site remediation of arsenic-contaminated soils.

Analysis of the Effect of Forest Fires on the Mineralogical Characteristics of Soil (산불 영향에 따른 토층의 광물학적 특성 변화에 관한 연구)

  • Man-Il Kim;Chang-Oh Choo
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Forest fires increase the risk of subsequent soil erosion and mass movement in burned areas, even under rainfall conditions below landslide alert thresholds, by destroying plants and vegetation and causing changes to soil properties. These effects of forest fires can alter runoff in burned areas by altering soil composition, component minerals, soil water repellency, soil mass stability, and soil fabric. Heat from forest fires not only burns shallow organic matter and plants but also spreads below the surface, affecting soil constituents including minerals. This study analyzed X-ray diffraction and physical properties of topsoil and subsoil obtained from both burned and non-burned areas to identify the composition and distribution of clay minerals in the soil. Small amounts of mullite, analcite, and hematite were identified in burned soils. Vermiculite and mixed-layer illite/vermiculite (I/V) were found in topsoil samples from burned areas but not in those from non-burned areas. These findings show changes in soil mineral composition caused by forest fires. Expansive clay minerals increase the volume of soil during rainfall, degrading the structural stability of slopes. Clay minerals generated in soil in burned areas are therefore likely to affect the long-term stability of slopes in mountainous areas.

Distribution of Clay Minerals in Soils on the Northern Drainage Basin of the Nakdong River (낙동강 북부 배수유역의 토양 점토광물 분포)

  • Lee, Bong-Ho;Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.349-354
    • /
    • 2008
  • Semiquantitative mineralogical analysis of clays in soils was performed to understand the distribution of clay minerals in relation to bedrock lithology on the northern basin of the Nakdong River. The soils developed on the granitic bedrocks have high contents of kaolinite and smectite. mite was the major clay mineral in the soils from sedimentary bedrocks, with minor kaolinite, smectite, and intergrade (interstratified chlorite-smectite or hydroxy-interlayed vermiculite) clay minerals. Illite and kaolinite contents of the soils from metamorphic and volcanic bedrocks fall between those of the soils from the granitic bedrocks and those of the soils from the sedimentary bedrocks. The clay mineralogy of the soils depends on the compositions of bedrock minerals and their susceptibility to chemical weathering. The weathering of plagioclase resulted in the high kaolinite content of the soils derived from granitic bedrocks, while the soils derived from sedimentary bedrocks are abundant in residual illite.

The physico-chemical properties, mineralogical characteristics and heavy metal distribution of soils in Jeju island (제주도 대표토양의 이화학 및 광물학적 특성과 중금속원소의 분포)

  • Chon Chul-Min;Ahn Joo-Sung;Kim Kue-Young;Park Ki-Hwa
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.194-197
    • /
    • 2006
  • 제주도 대표토양을 대상으로 이들의 모재 및 토양단면의 토양 특성을 조사하고, 제주도 대표토양의 주요 유해 중금속 원소의 총 함량을 분석하여 그 분포특성과 이화학 및 광물학적 특성을 비교 평가하였다. 주성분분석 결과 전형적인 화산회토의 특성을 보이는데 하부 층위에서 Si, Al, Fe 함량의 증가 및 표토에서의 염기용탈을 보여주었다. 현무암질 모재 기원임을 보여주는 ferromagnesian 광물들이 주로 관찰되었으며 심토에서는 상당량의 깁사이트가 관찰되는 것이 특징인데 이는 표토에서 과잉 생성된 알루미늄이 하부토양으로 이동하여 이차적으로 생성집적된 것으로 판단된다. 중금속 총함량 분석결과, Zn, Ni, Co, Cr의 함량이 세계 토양 내 함량범위를 초과하였으며 향후 진행될 연구에서 제주도 화산회 토양의 주 점토구성광물인 알로페인을 비롯한 점토광물 및 비정질 물질에 대한 특성 및 정량적 조사와 중금속원소별 화학적 형태 파악을 위한 연속추출분석 등을 수행하여 중금속원소의 존재상을 규명하고 지표 토양 및 지하수 환경으로의 중금속 이동성을 평가하고자 한다.

  • PDF

Potassium and Clay Minerals in Upland Soils (밭 토양(土壤)의 점토(粘土) 광물(鑛物)과 가리(加里))

  • Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.135-151
    • /
    • 1977
  • The present paper summerizes the studies on clay mineralogical characteristics of Korean soil, relationship between potassium and clay minerals, potassium release pattern of clay minerals and utilization of clay minerals for soil conditioner and fertilizers, which have been carried out in this laboratory. 1. The red yellow podzolic soil is mostly abundant in the upland of Korea and mainly consists of halloysite and weathered intermediates of mica such as illite and vermiculite. 2. With regard to soil parent material, kaolin mineral occurs abundant in soils derived from granite and granite gneiss. Mica is dominant in basaltic soil. The main clay mineral of the soil, originated from the Tertiary, is found montmorillonite and the volcanic soil of Jeju Island has plenty of allophane as its main clay mineral. 3. It is confirmed that the soil fertility depends on the composition of clay minerals. The red yellow podzolic soil, containing lot of kaolin, shows low productivity while the montmorillonite soil has higher productivity. 4. The release rate of solid phase potassium (micas and fixed potassium) follows the 1st order reaction equation in the equilibrium solution of $IN-NH_4OAc$. The potassium release constant is positively correlated with the mica content of the clay but negatively correlated with the content of $14.5{\AA}$ minerals. On the other hand, the potassium release constant has very high correlation with the ratio(Kex/Kt) of exchangeable potassium(Kex) to total potassium(Kt). 5. It is also found that Kex/Kt has rather high correlation with the content of mica and $14.5{\AA}$ minerals existed in the clay as well as the mica content of the soil.

  • PDF

Studies on the Surface Charge Characteristics of Two Inceptisols and One Aridsol in Hawaii (하와이 화산회(火山灰)로부터 발달한 Inceptisols과 Aridsol 토양(土壤)의 표면전하(表面電荷) 특성(特性)에 관(關)하여)

  • Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.3
    • /
    • pp.110-116
    • /
    • 1981
  • Soil surface charge which manipulates some important soil physico-chemical properties such as nutrient and water holding abilities, colloidal stability and soil erosion was investigated in wide range of soil pH, using soils developed originally from same volcanic ash deposit but under different rainfall condition in Hawaii. The results can be summarized as follows : 1. Ustollic Camorthid (Kawaihae soil) which was developed under the lowest rainfall (less than 500 mm/yr) revealed low Z.P.C. (4.5-5.0) and less dependence of net charge on concentration of indifferent electrolytes. 2. Typic Hydrandepts (Akaka and Hilo soils) which were developed under the high rainfall (3050-7600 mm/yr) showed the Z.P.C. in between 5.5-7.0 and high dependence of net charge on concentration of indifferent electroytes. 3. It was found by X-ray diffraction together with total chemical analysis that amorphous materials were dominant (above 6.0%) in Typic Hydrandepts while dehydrated halloy-site (1 : 1 clay minerals) was dominant (45-50%) in Ustollic Camorthid. 4. In spite of little difference in particle size distribution of the soils, the difference of specific surface area was remarkable showing the order of Akaka (289) > Hilo (268) > Kawaihae (93). 5. It was evident, taking account of apparent field pH values, 5.2 of Akaka, 5.5 of Hilo and 7.0 of Kawaihae soil, respectively, that Akaka, and Hilo soils would show either positive or near zero (+ or 0) of ${\Delta}pH$ while Kawaihae soil would exhibit negative (-) of ${\Delta}pH$ at natural field condition.

  • PDF

Dust Deposition and Weathering in Soils of Seoraksan (설악산 토양 내 황사의 퇴적과 풍화)

  • Jeong, Gi Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.255-264
    • /
    • 2021
  • Asian dust (Hwangsa) deposited on the surface of the Korean Peninsula is difficult to recognize their existence in mountainous terrain undergoing active erosion and weathering. This study examined Asian dust sediments mixed in soils by analysing clay mineralogy, mineral composition, and microtextures of fine silt (< 20 ㎛) in the alkali feldspar granite area of Seoraksan. The fine silt was composed of detrital particles derived from bedrocks, Asian dust sediments, and their weathering products. Clay minerals of 2:1 structural type, chlorite, amphibole, epidote, and Ca-bearing plagioclase were identified as eolian mineral particles. During the weathering of the bedrock composed of quartz and alkali feldspars, albite was partially weathered to produce small amounts of gibbsite and kaolin minerals. Hydroxy-Al interlayered clay minerals were formed by the exchange and fixation of polynuclear Al cationic species into the interlayers of expandable 2:1 clay minerals dominated by illite-smectite series clay minerals. Contribution of Asian dust to the fine silt of soils was estimated around 70% on the basis of total contents of 2:1 phyllosilicates.