• Title/Summary/Keyword: 토양공극수

Search Result 188, Processing Time 0.026 seconds

Effects of Green Manure Crops on Growth and Yield of Carrot for Reduction of Continuous Cropping Injury of Carrot through Crop Rotation (당근 연작장해 경감을 위한 녹비작물 재배가 당근 생육 및 수량에 미치는 영향)

  • Kim, Seong-Heon;Seo, Dong-Cheol;Park, Jong-Hwan;Lee, Seong-Tae;Lee, Sang-Won;Kim, Hong-Chul;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • BACKGROUND: Soil incorporation of green manure crop(GMC) is one of the methods for reducing continuous cropping injury and increasing yield of carrot. The purpose of this study was to evaluate the effects of green manure crops on growth and yield of carrot for reduction of continuous cropping injury of carrot through crop rotation. METHODS AND RESULTS: To reduce the injury by continuous cropping system(CCS) of carrot cultivation, GMCs such as crotalaria and sudangrass were applied, which GMC was sowed in latter-June and returned to soil in latter-October. Nutrient contributions of N, $P_2O_5$, $K_2O$, CaO, and MgO in crotalaria were 8.3, 7.5, 4.4, 7.8, and 2.1 kg/10a, respectively. Nutrient contributions of N, $P_2O_5$, $K_2O$, CaO, and MgO in sudangrass were 8.4, 8.6, 26.8, 0.3, and 2.7 kg/10a, respectively. After incorporation of GMCs into soil, bulk density in soil with GMCs was lower than that in soil without GMCs(control). In soil after incorporation of GMCs, pH was not different in all treatment conditions, and ranged from 6.37~6.64. EC in soil after incorporation of GMCs was lower than that in soil without GMCs. The OM, T-N, and avail. $P_2O_5$ contents in soil with GMCs were higher than those in soil without GMCs. The growth and yields were increased as 39.2%(6,226 kg/10a) in the rotational cropping system(RCS) as compared to continuous cropping system(control and without NPK) of 4,473 kg/10a. Crotalaria cultivation were the most effective crop for reducing the injury of continuous cropping of carrot. CONCLUSION(S): This study suggest that the RCS using GMCs showed lower disease outbreak density in soil for carrot cultivation as compared to CCS without GMCs. Especially, the GMCs good effect for reduction of continuous cropping injury of carrot.

Incorporation Effect of Green Manure Crops on Improvement of Soil Environment on Saemangeum Reclaimed Land during Sorghum×Sudangrass Hybrid Cultivation (수수×수단그라스 재배시 녹비작물 혼입에 따른 새만금간척지 토양환경 개선 효과)

  • Yang, Chang-Hyu;Lee, Jang-Hee;Baek, Nan-Hyun;Jeong, Jae-Hyeok;Cho, Kwang-Min;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.744-748
    • /
    • 2012
  • This study was carried out to investigate the incorporation effect of green manure crops (GMC) such as the hairy vetch on improvement of soil environment in reclaimed land during sorghum${\times}$sudangrass hybrid (SSH) cultivation over the past three years from 2009 to 2011. Plots consisted of conventional fertilization (CF) and incorporation of GMC were divided by rates of additional nitrogen fertilizer ($100kg\;ha^{-1}$) and decreased percentage of 30 50 70 100 fertilization in addition to non nitrogen fertilization (NNF). Soil physico-chemical properties, growth and yield potential were examined. The results were as follows. The testing soil was showed strong alkaline saline soil with low organic matter contents and less available phosphate while exchangeable sodium and magnesium were higher. Soil salinity was increased during cultivation of summer crop. However, SSH was not affected by salt content. The fresh weight of GMC at incorporation time was $18,345kg\;ha^{-1}$. Content of total nitrogen at incorporation time was 3.09% and the C/N ratio was 12.8. Fresh and dry matter yield of SSH were higher in the order of 30%, CF, N50%, N70%d, N100%, and NNF. Fresh and dry matter yield of SSH increased in the order of CF ($55,050kg\;ha^{-1}$, $16,250kg\;ha^{-1}$), N contents from 30% to 9%. Soil physical properties, such as bulk density were decrease with incoporation of GMC, while porosity was increased. Soil chemical properties, such as pH was decreased while content of exchangeable calcium, available phosphate, and organic matter were increased. Also contents of exchangeable sodium and potassium were decreased with incorporation of GMC than those before experiment. Thus, we assumed that incorporation of hairy vetch was more effective that can lead to reduce chemical nitrogen fertilizer and to improve soil environment in cultivating SSH on Saemangeum reclaimed land.

Effect of Plant-Growth-Promoting-Bacterial Inoculation on the Growth and Yield of Red Pepper(Capsicum annuum L.) with Different Soil Electrical Conductivity Level (염류수준별 고추 생육과 수량에 미치는 식물생육보진미생물(植物生育保進微生物) 접종효과)

  • Lee, Young-Han;Yang, Min-Suk;Yun, Han-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.396-402
    • /
    • 1996
  • This study was conducted to determine the effect of treatment with the plant-growth-promoting bacteria on the growth and yield of red pepper(Capsicum annuum L.) with different soil electrical conductivity(EC) levels. The mixed liquid culture was done pseudomonas P and saboraud dextrose medium. The isolated bacteria(IB) were inoculated by spray of 3.7ml at 1/2000a pot filled with different soil electrical conductivity level(2.9, 8.6, 11.5dS/m) every week, respectively, with mixed liquid culture (Pseudomonas P+Sabouraud dextrose) of eight strains. The plant height of red pepper with IBs treatment in different soil EC levels showed better growth than IBs nontreatment in the order of the 2.9>8.6>11.5 dS/m. The yield of pepper with IBs treatment in different soil EC level was higher in 13% than IBs nontreatment and chemical properties($P_2O_5$, K, Ca, Mg) of the soil after harvest in IBs treatment were slightly increased, while organic matter and EC of IBs treatment were slightly decreased than those of IBs nontreatment. Moisture content of the soil after the harvesting with IBs treatment was slightly increased than IBs nontreatment.

  • PDF

Model Development on the Fate and Transport of Chemical Species in Marsh Wetland Sediments Considering the Effects of Plants and Tides (식생과 조석의 영향을 고려한 연안습지 퇴적물 내 물질거동 모형의 개발)

  • Park, Do-Hyun;Wang, Soo-Kyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.53-64
    • /
    • 2009
  • Wetlands can remove organic contaminants, metals and radionuclides from wastewater through various biogeochemical mechanisms. In this study, a mathematical model was developed for simulating the fate and transport of chemical species in marsh wetland sediments. The proposed model is a one-dimensional vertical saturated model which is incorporated advection, hydrodynamic dispersion, biodegradation, oxidative/reductive chemical reactions and the effects from external environments such as the growth of plants and the fluctuation of water level due to periodic tides. The tidal effects causes periodic changes of porewater flow in the sediments and the evapotranspiration and oxygen supply by plant roots affect the porewater flow and redox condition on in the rhizosphere along with seasonal variation. A series of numerical experiments under hypothetical conditions were performed for simulating the temporal and spatial distribution of chemical species of interests using the proposed model. The fate and transport of a trace metal pollutant, chromium, in marsh sediments were also simulated. Results of numerical simulations show that plant roots and tides significantly affect the chemical profiles of different electron acceptors, their reduced species and trace metals in marsh sediments.

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

Effects of Pig Compost and Liquid Manure on Yield, Nutrients Uptake of Rice Plant and Physicochemical Properties of Soil (돈분 퇴·액비 시용 방법이 벼 양분 흡수, 수량 및 토양물리화학성에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Baik, Nam-Hyun;Yang, Chang-Hyu;Jung, Je-Hyuck;Kim, Kee-Jong;Lee, Gyung-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.772-778
    • /
    • 2012
  • In order to develop the application method of compost manure (CM) and liquid manure (LM) for rice cultivation, experiments were conducted at silty loam paddy field in Gochang, Jeonbuk, a LM applied rate as N%; non-application, chemical fertilizer (CF) 100%, CM 50%+LM 50%, CM 30%+CF 70% and CM 30%+LM 70% as basal and additional fertilizer. $NH_4^+$-N content in paddy soil was higher with CF 100% application than the split application of compost and liquid pig manure fertilizer during the early stage of rice growth. However, there was no significant difference in the later part of rice growth. Amount of $NO_3^-$-N in leachate was decreased in CM 30%+LM 70% and CM 30%+CF 70% split applications compared to CF 100%. Amounts of OM and Avail $P_2O_5$, Exch. cations in soil of experiment after were highest with the split application of CM 50%+LM 50% and CM 30%+LM 70%. Amount of nutrient uptake of plants were no significant difference between the split application plots of CM and LM, but nitrogen utilization rate was 66% in average CM 50%+LM 50% and CM 30%+LM 70% to compared CF 100%. The rice yield of CM 50%+LM 50% was lower (90%) comparing that of CF 100% ($557kg\;10a^{-1}$). But the yield in CM 30%+CF 70% and CM 30%+LM 70% reached 96% in average, which did not show significant difference with that of CF 100%. Accordingly, LM 70% or CF 70% split application after CM 30% application was helpful in enhancing the physicochemical property of soil as well as reducing CF. It could be evaluated that this application in segmentation was better in productivity improvement and soil pollution reduction than the esinultaneous application of LM 100% in terms of split application in times of requirement for plants.

Effect of Crop Rotation on the Growth of Sesame(Sesamum indicum L.) and Soil Properties (윤작이 참깨의 생육과 토양의 이화학성에 미치는 영향)

  • Kim, Dong-Hwi;Seo, Jong-Ho;Kim, Chung-Guk;Choi, Seong-Ho;Ko, Mun-Hwan;Heo, Il-Bong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.216-224
    • /
    • 1998
  • The objective of this study was to investigate the effect of sesame monoculture and sesame in rotation (SR) with maize. soybean. barley or rye on reduction of injury by continous cropping in sesame. Field studies were conducted for 3-years (1995~1997) at the experimental field of the Crop Experiment Station. Compared to CS (continuous sesame). SR treatments turned out to keep more organic matter and higher exchangeable cation concentrations in soils. BS (barley and sesame in a 1-year rotation) and RS (rye and sesame in a 1-yea r rotation) treatments had significantly greater available $P_2O_5$ contents in soils than CS, MS (maize and sesame in a 3-year rotation) and SbS (soybean a nd sesame in a 3-year rotation). The pH of the soils under different treatments were not significantly different. SR treatments exhibited significantly lower bulk density and higher pore space than CS. Soil microbial biomass C (SMBC) and N (SMBN) were determined by the chloroform fumigation-extraction method. SMBC and SMBN were significantly higher in soils under BS and RS than those under CS, but only during the 1 year of monitoring. MS and SbS treatments resulted in higher SMBC and SMBN than CS. The occurrence of injury by disease of sesame is the important primary factor of injury by continous cropping, but the disease occurrence with rotation did not decrease in th is experiment. Under CS treatment, the growth and grain of sesame was significantly lower than those under other treatments. Compared to CS, the increments of grain yield of sesame were 68, 63, 57 and 51% for MS, RS, SbS and BS, respectively in the first harvest. In the second harvest, they were 24% for MS, 28% for RS, 20% for SbS and 19% for BS. The average increase ratios during the two years were 41, 41, 34, and 33% for MS, RS, SbS and BS, respectively.

  • PDF

Variation of Soil Physical Characteristics by Drainage Improvement in Poorly Drained Sloping Paddy Field (배수불량 경사지 논 토양의 배수방법에 따른 토양 물리성 변화)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.704-710
    • /
    • 2012
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. This study was conducted to evaluate soil physical characteristics by drainage improvement in poorly drained sloping paddy field. The results showed that subsurface drainage by Pipe Drainage improves the productivity of poorly drained soils by lowering the water table and improving root zone soil layer condition. In an Pipe drainage plot, soil moisture drained faster as compared to the other drainage methods. Infiltration rate showed high tendency to Piper Drainage method about $20.87mm\;hr^{-1}$ than in Open Ditch method $0.15mm\;hr^{-1}$. And Similarly soil water and degree of hardness and shear strength phase of soil profile showed a tendency to decrease. From the above results, we found that when an subsurface drainage was established with at 1m position from the lower edge paddy levee of the upper field in sloping poorly drained paddy fields Pipe Drainage was the most effective drainage system for multiple land use.

Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth (녹비작물 혼파 이용 벼 재배 시 왕겨숯 처리가 벼 생육 및 토양 특성에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Lee, Young-Han;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.484-489
    • /
    • 2010
  • The cultivation of green manure crops plays an important role in soil quality and sustainability of agricultural system. However, the incorporation of green manure crops may be of concern because it can lead to strongly reducing conditions in the submerged soil. This study was conducted to evaluate the effects of rice husk carbon on rice (Oryza sativa L.) cultivation using green manure mixtures (hairy vetch + rye) in rice paddy. Field experiments were conducted in rice paddy soil (Shinheung series, fine loamy, mixed, nonacid, mesic family of Aeric Fluventic Haplaquepts) at the National Institute of Crop Science (NICS), Korea from October 2007 to October 2008. The experiments consisted of three treatments: application or no application of carbonized rice husk, and conventional fertilization. These treatments were subdivided into whole incorporation and aboveground removal of green manure mixtures. The redox potential (Eh) was higher upon application of the carbonized rice husk when compared to no application at 8 and 37 days after transplanting (DAT). The ammonium-N ($NH_4$-N) in soil was highest upon the application of carbonized rice husk + whole green manure incorporation at 17 and 49 DAT. Plant height and tiller number of rice were similar to the $NH_4$-N concentration in soil. Rice yields of application and no application of carbonized rice husk treatment were not significant. However, application of carbonized rice husk improved the soil physical properties such as bulk density and porosity after rice harvest. Therefore, the results of this study suggest that carbonized rice husk could be used as soil amendment for environmentally-friendly rice production under a green manure mixture-rice cropping system.