• Title/Summary/Keyword: 토목 구조물공

Search Result 435, Processing Time 0.022 seconds

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.

A Study on Friction Anisotropy between Sand and Surface Asperities of Plate Using Modified Direct Shear Test (수정된 직접 전단 시험기를 이용한 모래와 표면 돌출부를 갖는 플레이트 사이의 마찰 이방성에 대한 연구)

  • Lee, Seung-Hun;Chong, Song-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.29-38
    • /
    • 2022
  • The friction anisotropy of shear resistance can be selectively used in geo-structures. For example, larger axially loaded deep foundation, soil nails, and tiebacks increase load carrying capacity due to induced large shear resistance while pile penetration and soil sampling produce minimal shear resistance. Previous studies confirmed direction-dependent shear resistance induced by interface between soil and surface asperity of plate inspired by geometrical shape of snake scale. The aim of this paper is to quantitatively evaluate interface friction angle with different surface asperities. Using the modified direct shear test, a total of 51 cases, which sand are prepared at the relative density of 40%, are conduced including 9 plates, two shear direction (shearing direction against the height of surface asperity is increased or decreased during shearing test), and three initial vertical stress (100 kPa, 200 kPa, 300 kPa). Experimental results show that shear stress is increased with higher height of surface asperity, shorter length of surface asperity, and the shearing direction that the height of surface asperity increases. Also, interface friction angle is decreased with larger surface asperity ratio, and shearing direction with increasing height of surface asperity produces larger interface friction angle regardless of the surface asperity ratio.

Target Reliability Indices of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 목표 신뢰도지수)

  • Kwak, Kiseok;Huh, Jungwon;Kim, Kyung Jun;Park, Jae Hyun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.19-29
    • /
    • 2008
  • As a part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, reliability analyses for driven steel pipe piles are performed and the target reliability indices are selected carefully. The 58 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles. The static bearing capacity formula and the Meyerhof method using N values are applied to calculate the expected design bearing capacity of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative bearing capacities with the design values. Reliability analysis was performed by two types of advanced methods: First Order Reliability Method (FORM), and Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The static bearing capacity formula exhibited relatively small variation, whereas the Meyerhof method showed relatively high inherent conservatism in the resistance bias factors. Reliability indices for safety factors in the range of 3 to 5 were evaluated respectively as 1.50~2.89 and 1.61~2.72 for both of the static bearing capacity formula and the Meyerhof method. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

Development of Flood Damage Estimation Method for Urban Areas Based on Building Type-specific Flood Vulnerability Curves (건축물 유형별 침수취약곡선 기반의 도시지역 침수피해액 산정기법 개발)

  • Jang, Dongmin;Park, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.149-160
    • /
    • 2024
  • Severe casualties and property damage are occurring due to urban floods caused by extreme rainfall. However, there is a lack of research on preparedness, appropriate estimation of flood damages, assessment of losses, and compensation. Particularly, the flood damage estimation methods used in the USA and Japan show significant differences from the domestic situation, highlighting the need for methods tailored to the Korean context. This study addresses these issues by developing an optimized flood damage estimation technique based on the building characteristics. Utilizing the flood prediction solution developed by the Korea Institute of Science and Technology Information (KISTI), we have established an optimal flood damage estimation technology. We introduced a methodology for flood damage estimation by incorporating vulnerability curves based on the inventory of structures and apply this technique to real-life cases. The results show that our approach yields more realistic outcomes compared to the flood damage estimation methods employed in the USA and Japan. This research can be practically applied to procedures for flood damage in urban basement residences, and it is expected to contribute to establishing appropriate response procedures in cases of public grievances.

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

Development of an Activity-Based Conceptual Cost Estimating Model for P.S.CBox Girder Bridge (대표공종 기반의 P.S.C 박스 거더교 개략공사비 산정모델 개발 -상부공사 중심으로-)

  • Cho, Ji-Hoon;Kim, Sang-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.197-201
    • /
    • 2008
  • Conceptual cost estimates for domestic highway projects have generally been conducted using governmental unit-price references. Inaccuracies in governmental unit-price data has repeatedly addressed in the Korean construction industry which often lead to poor decision making and cost management practices. Thus, needs for developing a better way of conceptual cost estimating has been widely recognized. This research is considered as the first step in developing such model using real-world cost data based on actual construction activities. The data analyzed in this paper includes 41 P.S.C (Prestressed Concrete) Box bridges which broke into 4 categories based on construction methods such as I.L.M(Incremental Launching Method), M.S.S(Movable Scaffolding System), F.S.M(Full Staging Method), and F.C.M(Free Cantilever Method). Actual design documents; including actual cost estimating documents, drawings and specifications were carefully reviewed to effectively break down cost structures for PSC girder bridges. Among more than 40 cost categories for each P.S.C girder bridge type, 7 of them were identified which accounted for more than 95% of total construction cost (ILM: 99.47%, MSS: 99.22%, FSM: 98.18%, and FCM: 98.12%). In order to validate the clustering of cost categories, the variation of each cost category has been investigated which resulted in between -1.16 % and 0.59%.

  • PDF

Design of Interface between 3D Object Model and Structure Analysis Program (3D 객체 모델과 구조해석 프로그램의 인터페이스 설계)

  • Park, Jae-Geun;Kim, Min-Hee;Lee, Kwang-Myong;Choi, Jung-Ho;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.247-252
    • /
    • 2008
  • Recently, the virtual construction system in which project participants efficiently share and control the information throughout the life-cycle of construction project using 3D object models is being developed all over the world. In this paper, a design of interface between 3D object model of structures and structural analysis system that is essential for the analysis and design of civil structures in the virtual space is treated. The relation parametric modeling technique that is needed to make the 3D object models and the construction method of product breakdown structure(PBS) that considers the several parameters for the structural analysis are presented. PBS is built so that it is possible to extract needed attribute information from 3D object model and to apply it to the structural analysis. Design methodology for interface program is proposed that several numerical values determined by the cooperative work same as structural analysis are delivered to 3D object models without additional work. An interface program between 3D object models and structural analysis system developed based on the proposed method would be effectively used to develop virtual construction system.

Unsaturated Shear Strength Characteristics of Nakdong River Silty Sand (낙동강 실트질 모래의 불포화 전단강도 특성)

  • Jin, Guang-Ri;Shin, Ji-Seop;Park, Sung-Sik;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • There are many technical problems, which can not be resolved by the concept of saturated soil mechanics. Unsaturated soils show an apparent cohesion due to negative pore pressure and relatively lower permeability due to entrapped air compared to saturated soils. The determination of engineering properties of soils with various moisture content is very important to evaluate shear strength and stability of natural and engineered soils. So various researches should be made on unsaturated soils. Especially, sandy soils are widely distributed near Nakdong river, one of the four rivers where Restoration Projects were carried out. Many structures such as dams, flood control facilities, detention facilities and reservoirs have been built in this area. In this study, unsaturated triaxial compressive tests were conducted on sands or silty sands at Nakdong river in order to provide their fundamental characteristics for design and construction of geotechnical structures. As a result of the tests, the maximum deviator stress increased as the confining stress and matric suction increased. The cohesion increased non-linearly as the matric suction increased, but the angle of internal friction was marginally changed.

Behaviour of Ground Anchor According to Period Characteristic of Seismic Load Using Numerical Analysis (수치해석을 통한 지진하중의 주기특성에 따른 그라운드 앵커의 거동)

  • Oh, Dong-Wook;Jung, Hyuk-Sang;Yoon, Hwan-Hee;Lee, Yong-Joo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.635-650
    • /
    • 2018
  • Many people have been recognized that the Korean Peninsula is no longer safe area from the earthquake by the recent earthquakes occurred in the country. The earthquakes that occurred at Pohang and Gyeongju appeared differently from them considered in the seismic design and researches on the seismic design method have been also conducted by many researchers. Studies on seismic loads are mainly focused on existing superstructures, and research involving them has been actively carried out in reality. However, paper regarding structural stability of reinforcement from seismic load such as soil-nails, rock-bolts, ground anchors which were constructed to ensure stability of serviced structure have been published rarely. In this study, ground anchor been effected by static load and seismic load which is settled in the weathered rock is analyzed. Results for static load are obtained from field test and seismic load is from numerical analysis. In this study, the behavioral characteristics of the ground anchor were analyzed by numerical analysis in case of seismic loading based on the result of the in-situ tensile test of the ground anchor settled weathered rock. As a result, settlement of concrete block due to application of tension force for ground anchor occurred as well as following loss of axial force for ground anchor. Also, as bond length and period of seismic load are longer, increasement of displacement is greater.

Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring (상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발)

  • Park, Jun-Young;Shin, Jun-Sik;Won, Jong-Bin;Park, Jong-Woong;Park, Min-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.301-308
    • /
    • 2021
  • It is important to develop a digital SOC (Social Overhead Capital) maintenance system for preemptive maintenance in response to the rapid aging of social infrastructures. Abnormal signals induced from structures can be detected quickly and optimal decisions can be made promptly using IoT sensors deployed on the structures. In this study, a digital SOC monitoring system incorporating a multimetric IoT sensor was developed for long-term monitoring, for use in cloud-computing server for automated and powerful data analysis, and for establishing databases to perform : (1) multimetric sensing, (2) long-term operation, and (3) LTE-based direct communication. The developed sensor had three axes of acceleration, and five axes of strain sensing channels for multimetric sensing, and had an event-driven power management system that activated the sensors only when vibration exceeded a predetermined limit, or the timer was triggered. The power management system could reduce power consumption, and an additional solar panel charging could enable long-term operation. Data from the sensors were transmitted to the server in real-time via low-power LTE-CAT M1 communication, which does not require an additional gateway device. Furthermore, the cloud server was developed to receive multi-variable data from the sensor, and perform a displacement fusion algorithm to obtain reference-free structural displacement for ambient structural assessment. The proposed digital SOC system was experimentally validated on a steel railroad and concrete girder bridge.