• Title/Summary/Keyword: 토목섬유 튜브

Search Result 17, Processing Time 0.021 seconds

Study on the Influencing Factor for the Decision of the Embankment Construction Method using Geotextile tube Filled with Dredged soil (준설 토목섬유 튜브를 활용한 제방 축조 공법 결정을 위한 영향 인자에 관한 연구)

  • Kim, Hyeong-Joo;Sung, Hyun-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5230-5236
    • /
    • 2013
  • In this paper, the influencing factors for the decision of the embankment construction method utilizing geotextile tube were studied by analyzing the application and economic considerations based on the construction practices of the geotextile tube filled with dredged soil in the domestic and international. In the domestic case, cost savings of 40 to 50% is attained by applying geotextile tubes in the embankment construction and in the international case, the amount of quarry materials was reduced from 20 to 70% by replacing the core of the embankment with geotextile tube. As a result, utilization of geotextile tube filled with dredged soil should be considered in a very large construction site with a quarry-to-site delivery distance of more than 16~25km. The construction scale and delivery distance were found to be important influencing factors for the decision of the embankment construction method utilizing geotextile tube filled with dredged soil.

A Study on the Shape and Cone Resistance of Dredged Fill in Geotextile Tube under Water and Drained Conditions (준설토의 퇴적형상과 수침조건에 따른 토목섬유 튜브 내 준설토의 콘 저항치에 관한 연구)

  • Kim, Hyeong Joo;Won, Myoung Soo;Lee, Jang Baek;Kim, Young Shin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.85-96
    • /
    • 2016
  • A series of tests were conducted to examine the filled tube shape with respect to the filling module type used and to investigate cone resistance properties of a dredged-soil-filled geotextile tube under water and drained conditions. Results based on the filling observation showed that the distribution of the accumulated fills inside the acrylic cell and vinyl tubes differs with respect to the type of filling modules. A crater formation around the inlet area was found during the test using I-type filling module and a horizontal sediment distribution was found during the test using inverse T-Type filling module. The dredged fill material was obtained from the Saemangeum area. The geotextile tube deformation of each filling stage was almost converged when the tube was fully drained. The cone resistance of the dredged fill in the geotextile tube under drained condition is large and is approximately 2~6 times that of the tube under water condition.

Feasibility and Filtering Efficiency of Geotextile Tube Structure with Polymer Material (지오텍스타일 재질에 따른 필터성능 및 튜브구조물 적용성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kim, Sung-Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2005
  • In recent years, the geotextile tubes filled with dredged material have been used in dike and breakwater construction for a number of projects around the world, and their use in this field is growing very fast. One of the most attractive advantages of geotextile tube technology is can be use the in-situ filling materials by hydraulic pumping, it can be also established lower costs and fast construction than other technology. Geotextiles form one of the two largest groups of geosynthetics and it is commonly made by two major types of polymer material(Polypropylene, Polyester). The objective of this paper is to examine several issues associated with drainage function and feasibility of geotextile tube structure such as filtering efficiency, dewatering efficiency, and filling process with polymer materials. Based on the laboratory filtering test and in-situ tests, polypropylene goetextile is more effective for drainage function of geotextile tube technology.

  • PDF

Behavior of Geotextile Tube for Erosion Control (침식방지를 위한 토목섬유튜브의 거동 분석)

  • Chang, Yong-Chai;Son, Ka-Young;Lee, Seung-Eun;Kim, Sang-Jin;Kim, Suk-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • Geotextile tube method is the latest application process to construct a variety of civil structures such as river and coastal structures by using geotextile which is a high polymer synthetic fiber. In this paper, laboratory tests and field tests were conducted in order to identify the behavior, stability and application possibility of geotextile tube which prevents the erosion of coastal sand. As a result of large-scale direct shear test, which is one of laboratory tests, the increase in friction angle was shown as the relative density increased, and friction angle of sand/geotextile was larger than that of sand/sand. As a result of field test, the behavior and stability during construction and after construction were identified through measurement, and the effect of preventing erosion was confirmed.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Structural Behavior of Flexurally Reinforced FRP-Concrete Composite Compression Member with FRP (FRP로 휨보강된 FRP-콘크리트 합성압축재의 구조적 거동)

  • Park, Joon-Seok;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.10-16
    • /
    • 2010
  • In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.

  • PDF

A Study on function of Artificial Reef by Using Geotexile Tube (토목섬유를 활용한 인공리프의 기능에 관한 연구)

  • Shin, Moon-Seup;Ahn, Kyung-Soo;Shin, Eun-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.623-631
    • /
    • 2003
  • A large scale hydrological laboratory model tests for the geotextile tube were conducted to investigate the stability of geotextile tube and the capability of breakwater with variations of significant wave height, percentage of soil filling, and the water level above geotextile tube. The sliding displacement of geotextile tube is measured to check the stability of geotextile tube for given the various significant wane heights. The marked mash was laid out at the bottom of water channel to measure the displacement of geotextile tube. The bench mark was furnished in the upper part of water channel and the initial location was marked every 10cm interval to measure the displacement of geotextile tube. The wane transmit ratios are analyzed with the variations of soil filling of tube and of the top crown height wave above the geotextile tube in order to study the performance of brekwater before and after the installation of geotextile tube.

Installation Technology and Behavior of Silty Clay Filled Geotextile Tube (실트질 점토 채움 시 지오텍스타일 튜브의 거동 및 시공 방법에 관한 연구)

  • Shin, Eun-Chul;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(detached breakwater, groins and jetty). The geotextile tubes are made of sewn geosynthetics sheets. If the sandy soil is use to fill material, these inlets should be spaced closely to assure uniform filling of the tubes because sandy soil and geosynthetic is very pervious. However, the clayey soil or contaminated slurry is used, the inlets can be located relatively long distance. The fine clayey particles tend to rapidly blind the fabric slowing down water escape through the geotextile. This paper presents a field test result of a geotextile tube in the land reclamation project for the Songdo New City construction site. The dredged silty clay was dredged by the dredging ship and hydraulically pumped into the geotextile tube. The height of geotextile tube was measured at every filling stage and also measured width and diameter of geotextile tube with the elapsed time. Based on the test results, if the clayey filling material is used, the pumping step must be divided 3~4 stages for drainage and sediment. After complete drainage, the height of the geotextile tube reduces by approximately 50%.

  • PDF