• Title/Summary/Keyword: 토모그램

Search Result 48, Processing Time 0.017 seconds

A Study for the Construction of the P and S Velocity Tomogram from the Crosswell Seismic Data Generated by an Impulsive Source (임펄시브 진원에 의한 공대공 탄성파기록으로부터 P파, S파 속도 영상도출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.138-142
    • /
    • 2003
  • Crosswell seismic data were acquired in three sections crossing a tunnel of 3 different types; one was empty, another was ailed by sand, and the other was filled by rock debris. Both the P- and S-wave first arrivals were picked and the traveltime tomography was conducted to generate the P- and S- wave velocity tomograms on the all three sections. Among six tomograms, only one tomogram shows a low velocity zone that can be interpreted as a tunnel image. The tomogram is the P wave velocity image of a section that crosses an empty tunnel. The result of numerical analysis for the spatial resolution of the traveltime tomography was consistent to this finding.

Study of Seismic Data Processing Method for Tunnel Detection (터널탐사를 위한 탄성파 자료처리법에 관한 연구)

  • Suh, Baek-Soo;Sohn, Kwon-Ik
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.633-642
    • /
    • 2007
  • Traveltime tomogram is generally used for interpretation of seismic tunnel data. In the field data, the first arrival traveltime is less dispersive with increasing source-receiver seperation compared to theoretical model data. So the result of calculation can be serious despite of small errors such as traveltime picking. In this study, amplitude method and error tomogram method are tried to overcome these problems. This method will help the interpretation of the data from the underground tunnel.

Resolution and Image processing Methods of Tomogram and There impact of Computational Velocity Estimation (토모그램의 해상도와 영상처리 기법이 속도예측에 미치는 영향)

  • Lee, Min-Hui;Song, Da-Hee;Keehm, Young-Seuk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.147-154
    • /
    • 2009
  • Physical properties of rocks, such as velocity, are strongly dependant on detailed pore structures, and recently, pore micro-structures by X-ray tomography techniques have been used to simulate and understand the physical properties. However, the smoothing effect during the tomographic reconstruction procedure often causes an artifact - overestimating the contact areas between grains. The pore nodes near a grain contact are affected by neighboring grain nodes, and are classified into grain nodes. By this artifact, the pore structure has higher contact areas between grains and thus higher velocity estimation than the true one. To reduce this artifact, we tried two image processing techniques - sharpening filter and neural network classification. Both methods gave noticeable improvement on contact areas between grains visually; however, the estimated velocities showed only incremental improvement. We then tried to change the resolutions of tomogram and quantify its impact on velocity estimation. The estimated velocity from the tomogram with higher spatial resolution was improved significantly, and with around 2 micron spatial resolution, the calculated velocity was very close to the lab measurement. In conclusion, the resolution of pore micro-structure is the most important parameter for accurate estimation of velocity using pore-scale simulation techniques. Also the estimation can be incrementally improved if combined with image processing techniques during the pore-grain classification.

  • PDF

Model Simulation for Assessment of Image Acquisition Errors Affecting Electron Tomography (영상 자료 획득시의 오류가 전자토모그래피 결과에 미치는 영향 고찰-모델 시뮬레이션을 중심으로)

  • Jou, Hyeong-Tae ;Lee, Su-Jeong;Kim, Youn-Joong;Suk, Bong-Chool
    • Applied Microscopy
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2008
  • This simulation study examined the effect of data acquisition error including the data type of TEM image, and incident beam intensity of the tilt series on 3D tomograms. Simulation was performed with the 3D head phantom model of Kak and Slaney, and the slightly modified 3D head phantom model with enhanced difference in absorption coefficients. Reconstructed tomogram for the original head phantom model using 8-bit gray-scale image was distorted with extremely high level of noise, while an acceptable result was obtained for the modified model. The results for the original model using wrong formulation for the transmitted beam intensity was proved to be incorrect. The high level of noise along the z direction was found in case of the modified model. On the other hand, the wrong value of incident beam intensity in both models gave distorted results. In order to reconstruct an artifacts-free 3D structure from the projections with invisible features in electron tomography, the 16-bit projection images should be used with the correct incident beam intensity which is applied to Beer's law.

Development and Application of a Seismic Tomography Software Based on Windows (탄성파 토모그래피 자동화 처리 소프트웨어 개발 및 적용성 검토)

  • Jung, Sang-Won;Ha, Hee-Sang;Ko, Kwang-Beom
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.157-163
    • /
    • 2004
  • In this study, a travel-time tomography software was developed under the MS Windows system and GUI environment for user. The software supports following features: (1) supporting various data input format (2) flexible treatment of shot and receiver coordinate coding (3) flexible first arrival picking and modification (4) easy modification of intermediate tomogram. It is expected that the effort of the user can be minimized in each data processing step.

High Resolution Cross-well Seismic Tomography for Description of Shear Zone in Inter-well Region (시추공 간 전단대 특성 규명을 위한 고해상 탄성파 토모그래피)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.255-260
    • /
    • 2006
  • Measurements in two adjacent (about 1.5 m separation) boreholes reveal that there is a significant degree of variations in the width and property (permeability) of shear zones in the granitic rock. A high frequency (>10 kHz) cross-well seismic tomography was conducted to characterize the features of permeability distribution at the shear zones in the inter-well region. At the shear zones, the correlation between the permeability at the well location and the velocity pattern shown in the cross-well velocity tomogram suggests that a high resolution velocity tomogram may provide useful information for the shear zone characteristics, such as permeability, fracture density, width, and length.

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.

Investigation of Concrete Flaw Using Seismic First Arrival (탄성파 초동주시를 이용한 콘크리트 구조물의 결함 탐지)

  • 서백수;장선웅;김석현;서정희
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.120-121
    • /
    • 2001
  • The purpose of this study is to investigate concrete flaw using seismic first arrival and various inversion method. Seismic wave propagation was calculated using finite element method in theoretical modelling and tomogram was made using various inversion methods in theoretical and experimental modelling. Five steps of seismic first arrival were selected from FEM results and these data were used to calculate seismic velocity section. According to the results, exact seismic first arrival picking method was proposed and experimental modelling was conducted.

  • PDF

Microwave Tomography Analysis System for Breast Cancer Detection (전자파 기반 유방암 진단을 위한 토모그램 분석 시스템)

  • Kwon, Ki-Chul;Yoo, Kwan-Hee;Kim, Nam;Son, Seong-Ho;Jeon, Soon-Ik
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.19-26
    • /
    • 2009
  • The microwave exposure device for microwave breast cancer detection consists of RF transceiver and several antennas. The microwave information of object acquired from the microwave exposure device can be calculated permittivity and conductivity by using the inverse scattered analysis. In this paper, we have developed the software for detecting breast cancers based on microwave tomography, by which users not only can check out the existence of breast cancers through the permittivity and conductivity information analysis of the object's internal, but also can analysis easily information for distribution of breast cancers. The developed software provides the function for visualizing the captured permittivity and conductivity information as 2D or 3D color images on which users can easily detect the existence of breast cancers. For more detailed analysis of tomography images, the proposed software also has provided the functions for displaying their cutting profiles as well as position and size information of special area in them.

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF