• Title/Summary/Keyword: 토모그래피

Search Result 265, Processing Time 0.023 seconds

Ocean Acoustic Tomography using by Range-Dependent Canonical Ocean (거리종속 표준해양을 이용한 해양음향 토모그래피)

  • 한상규
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.41-43
    • /
    • 1996
  • 동해의 경우 강한 극전선이 존재하여 복부해역과 남부해역의 음속구조는 커다란 차이를 보이고 있다. 이러한 해역에서 평균음속구조를 구하여 표준해양을 설정할 경우 음파 전파경로의 차이가 커지게 된다. 따라서 이러나 해역에서 해양음향 토모그래피를 이용한 해양탐사를 수행하기 위해서는 해역별로 다른 음속구조를 가지는 표준해양의 설정이 필요하며 이를 근거로 음파의 전파경로 및 음속구조를 표준해양으로 설정하여 수온 및 수중음속의 변동량을 역추정하는 방법을 이용하고 있다. 본 연구에서는 인위적인 극전선을 설정하고 해역별 특징을 갖는 표준해양을 설정하여 음파 도달시간의 기준을 설정하고 음속구조의 역추정을 수행하여 기존의 해양음향 토모그래피에 의한 해양탐사 방법과 비교하였다. 그 결과 기존의 해양음향 토모그래피를 이용한 역추정에서는 전선의 형태를 재현하기 위해서 여러 개의 음원과 수신기가 필요하였으나 거리종속 표준해양을 이용할 경우 그 수가 줄어도 가능하고 평균오차고 작아지는 결과를 얻었다.

  • PDF

Guided Wave Tomographic Imaging Using Boundary Element Method (경계요소법을 이용한 유도초음파 토모그래피 영상화 기법)

  • Piao, Yunri;Cho, Youn-Ho;Jin, Lianji;Ahn, Bong-Young;Kim, Noh-Yu;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.338-343
    • /
    • 2009
  • Tomography is the imaging method of cross sectional area using multi beam signals and is mainly applied to the medical diagnosis to acquire the image of the inside human body. This method is pretty meaningful in nondestructive evaluation field since the imaging of the inspection region can enhance the comprehension of the inspector. Recently, much attention has been paid to the guided wave for the diagnosis of platelike structures. So, in this work, a study on the imaging of the damage location in a plate was carried out on the basis of computer aided analysis of guided waves and tomographic imaging. To this end, boundary element method was employed to analyze the effect of the damage in plate on the propagation of the guided waves and the analytic results were applied to the tomographic imaging method to identify the damage location. Consequently, it was shown that the number of sensors heavily affect the inspection performance of the damage location.

Evaluation of near surface Vs distribution by using SPT uphole method (SPT 업홀기법을 이용한 지반의 2차원 전단파 속도 분포 도출)

  • Kim, Dong-Soo;Bang, Eun-Seo;Kim, Jong-Tae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.93-116
    • /
    • 2005
  • SPT-Uphole tomography method was introducedand verified in this paper. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in site investigation, was used as a source and several surface geophones in line were used as receivers. Shear wave velocity (Vs) distribution map which has triangular shape around the boring point can be obtained by tomography inversion. The factors for obtaining reliable result of SPT-Uphole tomography are exact travel time information and accurate inversion method. To establish of the SPT-Uphole tomography procedure, the most reliable method for obtaining exact travel time information and verification of tomography inversion method were studied by using theoretical travel time information and finite element method (FEM) analysis. finally, SPT-Uphole tomography method was performed at the weathered soil site in Kimje. By comparing with several boring data including SPT-N value, feasibility of this method was verified in the field.

  • PDF

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.

Interpretation on the Subsurface Velocity Structure by Seismic Refraction Tomography (탄성파 굴절법 토모그래피를 이용한 지반의 속도분포 해석)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.6-17
    • /
    • 2002
  • Refraction tomography was developed to interpret subsurface velocity structure easily in topographic conditions. It was applied to synthetic refraction data to find the factors for optimization of applicability of refraction tomography such as configuration of profiling and its length, spacing of geophones and sources and topographic conditions. Also, low velocity layer near VSP hole could be detected by joint inversion with refraction and VSP data. Continuity of subsurface velocity structure in two different spread lines for area of house land development was good in case of applying our algorithm and velocity structure was classified quantitatively to evaluate rippability for engineering works.

Time-lapse inversion of resistivity tomography monitoring data around a tunnel (터널 주변 전기비저항 토모그래피 모니터링 자료의 시간경과 역산)

  • Cho, In-Ky;Jeong, Jae-Hyeung;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.361-371
    • /
    • 2009
  • Resistivity tomography is very effective geophysical method to find out the resistivity distribution and its change in time around a tunnel. Thus, the resistivity tomogram can provide helpful information which is necessary for the effective maintenance of the tunnel. However, an air filled tunnel severely distorts tomography data, especially when the current or potential electrode is placed near the tunnel. Moreover, the distortion can often lead to misinterpretation of tomography monitoring data. To solve these problem, we developed a resistivity modeling and time-lapse inversion program which include a tunnel. In this study, using the developed program we assured that the inversion including a tunnel gives much more accurate image around a tunnel, compared with the conventional tomogram where the tunnel is not included. We also confirmed that the time-lapse inversion of resistivity monitoring data defines well resistivity changed areas around a tunnel in time.

Enhancement of Traveltime Tomogram Using Block Constraint (모델변수 제약을 통한 주시토모그래피 영상화 향상)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.46-55
    • /
    • 2002
  • We investigated the distorting factors of velocity structure reconstructed by traveltime inversion. The set of models that fit the data in a numerical sense usually contains unrealistic models. Reconstructed velocity structure was enhanced because unreasonable models were eliminated by defining constraint of variable grid using a priori information. To correct time delay of source explosion, which distorts traveltime tomograms, terms for correction of time delay was formulated into equation of travel time tomography.

Development and Application of a Seismic Tomography Software Based on Windows (탄성파 토모그래피 자동화 처리 소프트웨어 개발 및 적용성 검토)

  • Jung, Sang-Won;Ha, Hee-Sang;Ko, Kwang-Beom
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.157-163
    • /
    • 2004
  • In this study, a travel-time tomography software was developed under the MS Windows system and GUI environment for user. The software supports following features: (1) supporting various data input format (2) flexible treatment of shot and receiver coordinate coding (3) flexible first arrival picking and modification (4) easy modification of intermediate tomogram. It is expected that the effort of the user can be minimized in each data processing step.