• Title/Summary/Keyword: 토류벽체

Search Result 24, Processing Time 0.034 seconds

Model Test for the Behavior of Retaining Walls Under Surcharge Load (상재하중을 받는 토류벽체의 거동에 관한 모형실험 연구)

  • Jung, On-Su;Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.49-57
    • /
    • 2005
  • The purpose of this study is to closely examine the influence of the surcharge load applied to the retaining wall through some model tests, in which wall stiffness in each stage of excavation, horizontal displacement of the retaining wall and surface displacement of the backfill according to wall stiffness and ground conditions, and change and distribution of the earth pressure applied to it were measured and their values were produced, then these values were mutually compared with their theoretical values and their values after analysis of the data obtained at the field, and they were analytically studied, in order to closely examine the influence of the surcharge load applied to the retaining wall. Findings from this study are as follows: The shape of ground surface settlement curve on the model ground under surcharge load, different from the distribution curve of regular probabilities which is of a shape of ground surface settlement under no surcharge load, appears in that settlement in an arching shape shows where the center part of surcharge load shows the maximum settlement. In examining the maximum horizontal displacement with the surcharge load applied to each stage of excavation, it occured at the point of 0.8H(excavation depth) when finally excavated. Regarding the range in which the displacement of the retaining wall increases according to application of surcharge load, the increment of displacement showed till the point of depth which is of two times of the distance of load from the upper part of the wall. Also since each displacement of the foundation plate caused by the ground surface settlement according to each stage of excavation occured most significantly at the final stage. Also since regarding wall stiffness, the wall of its thickness of 4mm(flexible coefficient $p:480m^3/t$), produced maximum 3 times of wall stiffness than its thickness of 9mm(flexible coefficient $p: 40m^3/t$), it was found out that influence of wall stiffness is so significant.

Earth Anchor 설치구조의 안전성 해석

  • 최경집;안세희;고상훈;김두환
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.157-162
    • /
    • 1999
  • 본 연구는 현장의 굴착공사에 따른 토류 구조물 설치공사의 수행에 있어서 토류 벽체의 지지 구조체률 형성하는 Earth Anchor에 대한 시공의 적정성 여부 및 설계목적에의 부합 여부를 판정하여 토류 벽체의 안정성 판단 및 Earth Anchor의 설계 목적에의 부합성 여부를 판단하기 위하여 본 연구를 수행하며 실험의 기준은 SIA. Standard Edition 1977 규정에 따르며, Earth Anchor의 설계, 정착장 및 자유장의 길이를 적절히 산출하고 정착력에 대한 신뢰도, 즉 인발력을 실험하여 정착장의 소요 안전율을 추정하며 더불어 지반에 대한 비교, 판단도 행하는 것이 목적이다. (중략)

  • PDF

Model Tests for The Behavior of Propped Retaining Walls in Sand (굴착모형실험을 통한 토류벽체 및 지반거동에 관한 연구)

  • 이봉열;김학문
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.259-279
    • /
    • 1999
  • Model tests on propped retaining walls were performed for the investigation of wall displacement, distribution of earth pressure, surface settlement and underground movement at various excavation stage in sand. The result of model tests on the trough of surface settlement showed considerable difference depending on the characteristic of wall stiffness, wall friction and soil condition. The location of maximum underground movement were found to be at range of 0.15H to 0. 1H(H: Final excavation depth). Effect of arching by the redistribution of earth pressure were closely related to the stiffness of wall as well as the soil condition. The wall displacement and earth pressure distribution were simulated by elasto - plastic beam analysis program and finite element method with GDHM model respectively. The result of elasto-plastic analysis showed some discrepancy on the wall displacement and earth pressure, but result of underground movement by FEM with various wall stiffness were in good agreement with the model tests.

  • PDF

Excavation Behavior of an Earth Retaining Wall Supported by Large Diameter Soil-cement Blocks (대구경 소일-시멘트 교반체로 보강한 토류벽의 굴착 시 거동 분석)

  • Kim, YoungSeok;Choo, Jinhyun;Cho, Yong Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.65-74
    • /
    • 2011
  • This paper presents an analysis of excavation behavior of an earth retaining wall supported by large diameter soil-cement blocks at a field trial site. The concept and design philosophy of the large soil-cement block reinforcement are described first. The wall behavior during sequential excavations up to 9.8 m is analyzed based on the measured lateral wall movements and earth pressures. The settlements of adjacent ground are examined by field measurements and inverse numerical analysis. The results indicate that, when the lengths of the soil-cement blocks were over 0.45 H (H: wall height), the displacements and the earth pressures induced by the excavations were similar to those supported by conventional methods such as soil nailing.

Beam on Elasto-Plastic Foundation Modeling of Tieback Walls (앵커토류벽의 탄소성보 해석에 관한 연구)

  • 김낙경
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.81-92
    • /
    • 1998
  • A beam on elasto-plastic foundation modeling of soldier pile and woodlagging tieback walls or anchored walls was developed and tested. An instrumented full scale tieback wall in sand was constructed at the National Geotechnical Experimentation Bite located on Texas A&M University. The experimental earth pressure deflection relationship (p-y curves) was developed from the measurements. The construction sequence was simulated in the proposed method. The conceptual methodology of an anchored wall design was introduced by using the proposed method. The proposed method was evaluated with the measurements of case histories in sand and clay. A parametric research was performed to study the most influencing factors for the proposed method. It is concluded that the proposed method represents a significant improvement on the prediction of bending moments and deflections of the properly designed walls.

  • PDF

조립식 블록 옹벽의 재하시 변형특성

  • 신방웅;권영철;유동우;오부영
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.209-214
    • /
    • 2000
  • 토류벽체는 배면토의 과도한 변형을 막기 위한 구조물이다. 일반적인 형식의 옹벽에는 중력식 옹벽, 철근 콘크리트 옹벽, 보강토 옹벽, 그리고 타이백(tie-back) 옹벽 등이 있다. 그러나 실용적인 관점에서는 실제로 많이 사용되고 있는 이들 형식의 옹벽들은 배수구의 막힘 현상과 보강재의 부식 및 정착공간의 부족, 온도차 신축균열, 미관상 자연 환경에 친화적이지 못한 문제점 등을 갖고 있다. 이에 따라 최근에는 콘크리트 블록으로 만든 새로운 형태의 옹벽이 개발되었다. (중략)

  • PDF

A Reliability Analysis of Rigid Retaining Wall due to the Modes of Wall Movement (벽체변위에 따른 토류벽의 신뢰도해석)

  • Jae, Yeong-Su;Kim, Yong-Pil;Song, Yong-Seon
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-16
    • /
    • 1988
  • The safety factor has been used widely and uniquely at present to check the safety of the structure . However, probability of failure would be logically attempted to check the reliability of the structure in future Coulomb's theory or Rankine's theory has been applied in practice to retaining earth structure in spite of the fact that the lateral earth pressure, which is the primary factor in the determination of wall structure, depends on the modes of wall movement . This study is concentrated on the two modes of , wall movement (active case rotation about bottom(AB) , active case rotation about top(AT)) of the overturning'failure of vertical wall with horizontal sand backfill . The static active earth pressure is determined by applying each of Coulomb's theory, Dubrova's redistribution theory and Chang's method The earthquake active earth pressure is determined by adding Seed and Whitman's earthquake pressure to the static earth pressure , On the condition that design variables are fixed with each of the above earth pressure, reliability is analyzed using the recently developed method of AFOSM (Advanced First Order Second Moment)

  • PDF

The Lateral Earth Pressure on Rigid Retaining Wall Due to the Various Modes of Wall Movement (벽체변위에 따른 기류벽에 작용하는 토압)

  • Chae, Yeong-Su;Im, Byeong-Ju;Baek, Yeong-Sik
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The reasonable static and dynamic earth pressure equations were developed by applying the Dubrova's theory and Chang's method to the following cases of wall movements; (1) Active case rotating about the top (2) Active case rotating about the bottom (3) Passive case rotating about the top (4) Passive case rotating about the bottom The equations are presented in accordance with particular wall displacements for the sand and cohesive back-fill, respectively. The results computed by the proposed equations are compared with the conventional theoretical values.

  • PDF

The Behavior of Earth Retaining Structures Using p-y Curve with Coupling (p-y 특성곡선의 Coupling을 고려한 토류벽의 거동해석)

  • Kim, Soo Il;Jeong, Sang Seom;Chang, Buhm Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.553-563
    • /
    • 1994
  • The behavior of earth retaining structure was investigated by considering coupling between soil springs in elasto-plastic soil. For the computation of soil reaction, soil on both sides of walls was simplified as e1asto-plastic springs, and the required horizontal displacement to mobilize Terzaghi's active and passive state was applied to construct the p-y curve. Reliability on computer program developed is verified through the comparison between prediction and in-situ measurements. Based on the results obtained, it is found that the prediction by using coupling between soil springs simulates well the general trend observed by the in-situ measurements. It is also found that the horizontal displacement required for the active state gives a very small effect to the displacement of walls in the sandy soil.

  • PDF

Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method (탄소성 방법과 유한요소법에 의한 붕괴 토류벽의 거동차이 분석)

  • Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.19-29
    • /
    • 2009
  • In this study, a numerical analysis was performed to predict the sequential behavior of anchored retaining wall where the failure accident took place, and verified accuracy of prediction through the comparisons between prediction and field measurement. The emphasis was given to the wall behaviors and the variation of sliding surface based on the two different methods of elasto-plastic and finite element (shear strength reduction technique). Through the comparison study, it is shown that the bending moment and the soil pressure at construction stages produce quite similar results in both the elasto-plastic and finite element method. However, predicted wall deflections using elasto-plastic method show underestimate results compared with measured deflections. This demonstrates that the elasto-plastic method does not clearly consider the influence of soil-wall-reinforcement interaction, so that the tension force (anchor force and earth pressure) on the wall is overestimated. Based on the results obtained, it is found that finite element method using shear strength reduction method can be effectively used to perform the back calculation analysis in the anchored retaining wall, whereas elasto-plastic method can be applicable to the preliminary design of retaining wall with suitable safety factor.