• Title/Summary/Keyword: 토량배분

Search Result 6, Processing Time 0.021 seconds

3D-based Earthwork Planning and CO2 Emission Estimation for Automated Earthworks (자동화 토공을 위한 3D 토량배분과 탄소발생량 추정)

  • Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1191-1202
    • /
    • 2013
  • The former researches on earthwork automation were mainly focused on GPS and sensor application, environment modelling, equipment path planning, work information management, and remote control etc. Recently, reducing $CO_2$ emission becomes one of main focuses for an automation research. In the case of earthwork operations, many kinds of construction machines or robots are involved, which can cause high level of $CO_2$ in a construction site. An effective earthwork plan and construction machine operation can both increase productivity and safety and decrease $CO_2$ emission level. In this research, some automation concepts for green earthworks are suggested such as a 3D construction site model, a 3D earthwork distribution based on two different earthwork methods, and an earthwork package construction method. A excel-based simulator is developed to generate the 3D earthwork distribution and to estimate the level of $CO_2$ emission for the given earthwork.

Development of a Soil Distribution Method and Equipment Operation Models Using Worker's Heuristics (작업자의 휴리스틱을 적용한 토량배분 및 장비운영 모델 개발)

  • Lim, So-Young;Kim, Sung-Keun;Ahn, Seo-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.551-564
    • /
    • 2016
  • Earthworks are the fundamental steps in a construction job, and are mainly comprised of smaller tasks performed by construction machinery. The productivity of the construction job can be improved by optimizing excavation, filling, and other such operations. Earthworks involve a lot of mechanical work performed by the collaboration between various kinds of construction equipment, which in turn leads to higher fuel consumption. Actual earthworks depend mostly on the intuition and experience of the driver of the machines, thus leading to inefficiency and environmental problems caused by unnecessary emission of carbon, Recently automated and information-oriented technologies are consistently being researched towards the improvement of efficiency of earthworks in the construction industry. The present research involves the introduction and understanding of the decision-making elements of heuristics which can be applied to the earthwork planning. A method is also suggested for creating an effective work path for construction machine to perform task packages (TP) for cutting and filling processes. A simulation test is performed to verify the effectiveness of suggested methods in terms of space interference and total moving distance of construction equipment.

Decision Making Model for Optimal Earthwork Allocation Planning (최적 토량배분 계획을 위한 의사결정 모델)

  • Gwak, Han-Seong;Seo, Byoung-Wook;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.162-163
    • /
    • 2016
  • This paper presents a mathematical model for optimizing earthwork allocation plan that minimizes earthwork cost. The model takes into account operational constraints in the real-world earthwork such as material-type (i.e., quality level of material) and quantities excavated from cut-sections, required quality of material and quantities for each embankment layer, top-down cutting and bottom-up filling constraints, and allocation orders. These constraints are successfully handled by assuming the rock-earth material as the three dimensional (3D) blocks. The study is of value to project scheduler because the model identifies the optimal earth allocation plan (i.e., haul direction (cut and fill pairs), quantities of soil, type of material, and order of allocations) expeditiously and is developed as an automated system for usability. It is also relevant to estimator in that it computes more realistic earthworks costs estimation. The economic impact and validity of the mathematical model was confirmed by performing test cases.

  • PDF

A Study on the Improvement of a Fleet Management System for Construction Equipment (건설장비 플릿관리 시스템 개선에 관한 연구)

  • Kim, Sung-Keun;Lim, So-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1063-1076
    • /
    • 2017
  • To improve the productivity of the earthwork, a fleet management system for construction equipment was suggested in previous studies. But there were some gaps between theory and practice. To overcome this problem, some opinions are gathered form experts and field engineers and four improvements have been proposed and reflected in the system. First, the previous system consists of one hardware module, so it is hard to install it at a control office and construction equipment at the same time. The server module for the office and the mobile module for construction equipment are separately developed. Second, the transportation algorithm that is used in the previous system can generate shortest paths for the earthwork distribution, but embankment areas are not gathered. This situation leads to a decrease in compaction productivity. A modified algorithm for earthwork distribution is suggested. Third, the automated coordinate transformation is performed to show the position of construction equipment on the 3D terrain in real-time. Fourth, construction equipment groups should be formed in the initial stage of earthwork and the number of equipment of each groups should be changed by operation status and site environment. But this functions did not work properly in the previous system. This problem is corrected in the proposed system. The improvements can make the proposed system much more realistic one and can leads to an increase in the productivity of earthwork operations.

Productivity analysis using a Fleet Management System for Construction Equipment (건설장비 플릿관리 시스템 적용시 생산성 분석)

  • Lim, So-Young;Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 2020
  • With the advent of the 4th industrial revolution and the combination of IoT, there have been diverse domestic and foreign researches for the development of construction industry. Especially, in the large-scale earthwork site where many and various construction equipments are put into, the control system between construction equipments is important for the increase of productivity. Thus, after developing the fleet management system for the optimum operation of construction equipments, the problems were checked and improved for each step in the process of application at site. In order to verify the site application process of the fleet management system for the optimum operation of construction equipments, the analysis on the productivity was performed by inputting the data used for the actual site and the site data using this system and then comparing the data through simulation. The analysis was limited to excavator and dump. In the results of the analysis, the rate of work per hour was increased to the range of 4 % while the cost price was decreased to 4 %. Even though the results of the analysis could be different depending on the site applied, the results showing the increase of workload of equipments and the decrease of cost price in the complex project at earthwork site verify the increase of productivity.

An Approach for Solid Modeling and Equipment Fleet Management Towards Low-Carbon Earthwork (저탄소 토공을 위한 솔리드 모델링 및 건설장비 플릿관리 방법론)

  • Kim, Sung-Keun;Kim, Gyu-Yeon;Park, Ju-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.501-514
    • /
    • 2015
  • Earthwork is a basic operation for all forms of civil works and affects construction time, cost and productivity. It is a mechanized operation that needs various construction equipment as a group and uses a lot of fuel for construction equipment. But, the problem is that earthwork operation is usually performed by equipment operator's heuristic and intuition, which can cause low productivity, high fuel consumption, and high carbon dioxide emission. As one of solutions for this problem, the fleet management system for construction equipment is suggested for effective earthwork planning, optimal equipment allocation, efficient machine operation, fast information exchange, and so forth. The purpose of this research is to suggest core methods for developing the equipment fleet management system. The methods include 3D solid parametric model generation, soil distribution using Cctree data structure, equipment fleet construction and equipment fleet operation. A simulation test is performed to verify the effectiveness of the equipment fleet management system in terms of equipment operating ratio, fuel usage, and $CO_2$ emission.