• Title/Summary/Keyword: 토구

Search Result 62, Processing Time 0.017 seconds

Evaluation of Spatial and Temporal Variations of Water Quality in Lake Shihwa and Outer Sea by Using Water Quality Index in Korea: A Case Study of Influence of Tidal Power Plant Operation (수질평가지수를 이용한 시화호 내측 및 외측 해역의 시·공간적 수질 변화 평가: 조력발전소 가동에 따른 영향 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eu-Yeol;Lee, Seung-Yong;Park, Eun-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.102-114
    • /
    • 2013
  • The basin of Lake Shihwa is one of highly industrialized region of Korea and a current environmental issue of study area is the operation of tidal power plant (TPP) to improve water quality. The application of water quality index (WQI) which integrates five physiochemical parameters (transparency, DO, DIN, DIP and chlorophyll-a) of water quality in Lake Shihwa and outer sea during 2011~2012 were performed not only to evaluate the spatial and temporal distribution of the water quality but also to assess the effect of water quality improvement by the operation of tidal power plant. The higher WQI values were observed in monitored sites near the industrial complexes in Lake Shihwa and the outfall of wastewater treatment plants (WWTPs) in outer sea. This indicates that the quality of seawater is influenced by diffuse non-point sources from industrial, municipal and agricultural areas in Lake Shihwa and by point sources from the effluence of municipal and industrial wastewater throughout WWTPs in outer sea. Mean WQI value decreased from 53.0 in 2011 to 42.8 in 2012 of Lake Shihwa. Water quality has improved significantly after TPP operation because enhancement of seawater exchange between Lake Shihwa and outer sea leads to improve a hypoxic condition which is primarily a problem in Lake Shihwa. Mean WQI of outer sea showed similar values between 2011 and 2012. However, the results of hierarchical cluster analysis and the deterioration of water quality in summer season indicate that the operation of tidal power plant was not improved the water quality in the upper most area of Lake Shihwa. To successfully improve overall water quality of Lake Shihwa, it is urgently necessary to manage and reduce of non-point pollution sources of the basin of Lake Shihwa.

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.