• 제목/요약/키워드: 텍스트 판별

검색결과 62건 처리시간 0.022초

표준화된 2D CAD와 3D Digital Modeling을 이용한 옥천천주교회의 연혁 기록 (Documentation of the History of Ok-Cheon Catholic Church by standardized 2D CAD and 3D Digital Modeling)

  • 김명선;최순용
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.523-528
    • /
    • 2011
  • 옥천천주교회는 1955년 건립된 이후 4차례에 걸쳐 변형되었다. 앞의 세 차례 변화는 창호와 지붕재료의 간단한 변경이었다면, 1991년 증축이 가장 큰 규모로 일(一)자형 평면에서 장십자형 평면으로 변경되면서 규모 구조 형태에 변화가 생겼다. 현재 이러한 건물연혁은 텍스트로만 정리되어 있을 뿐 시각자료로 구축되어 있지 않다. 이 연구는 옥천천주교회의 시기별 건물 연혁을 내장한 표준화된 2D CAD 도면을 작성하고 3D Digital Modeling을 통해 건물연혁 및 현재 상태를 쉽게 판별할 수 있는 3차원 시각자료를 구축하였다. 이를 통해 등록문화재로 지정된 이 교회의 연혁이 시각자료로 통합되었다. 이 자료는 건물의 보존 및 관리에 효과적으로 이용되며 향후 변경이나 증축, 복원이나 재활용 등에도 기초로 활용될 것이다.

문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안 (Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity)

  • 이민석;양석우;이홍주
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.105-122
    • /
    • 2019
  • 텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.

SNS 감성분석을 이용한 정보 추출 방법론에 관한 연구 (Study on the Methodology for Extracting Information from SNS Using a Sentiment Analysis)

  • 홍두표;정하림;박상민;한음;김홍회;윤일수
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.141-155
    • /
    • 2017
  • 최근 SNS 이용이 활발해짐에 따라 많은 사람들이 특정 이벤트 등에 대한 자신들의 생각을 비정형 데이터인 텍스트 형태로 자신의 SNS에 게시하고 있다. 이에 따라 금융, 유통 등 다양한 분야에서 이미 SNS를 이용하여 서비스 만족도 조사, 소비자 요구사항 모니터링, 대선 후보 선호도 등을 수행하고 있다. 하지만 교통 분야에서는 감성분석과 같은 비정형 데이터 분석을 활용하는 사례가 부족한 실정이다. 이에 본 연구에서는 한국도로공사에서 수집한 비정형 데이터인 고속도로 VOC 데이터를 이용하여 교통분야에서 사용할 수 있는 감성분석 방법론을 개발하였다. 개발된 감성분석 방법론은 수집된 비정형 데이터에 대한 형태소 분석, 감성사전 구축, 감성 판별 등으로 구성되어 있다. 개발된 방법론은 고속도로 관련 트윗 데이터를 이용하여 검증하였다. 분석 결과, 분석 기간 동안 고속도로와 관련하여 공사, 사고에 대한 정보 전달이 많이 이루어졌음을 짐작할 수 있었다. 또한 공사 및 사고로 인해 발생한 지체에 대하여 이용자들의 불만이 높았던 것으로 판단된다. 결론적으로 SNS 감성분석이 교통분야에서도 의미 있는 정보추출이 가능한 기법임을 확인하였다.

관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법 (Fake News Detection on YouTube Using Related Video Information)

  • 김준호;신용준;안현철
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.19-36
    • /
    • 2023
  • 정보통신기술의 발전으로 인해 누구나 쉽게 정보를 생산, 유포할 수 있게 되면서, 이를 악용하여 의도적으로 유포하는 거짓 정보인 가짜뉴스가 새로운 문제로 대두되기 시작하였다. 초기에 텍스트 방식으로 주로 전파되던 가짜뉴스는 점차 진화하여 이제는 멀티미디어 형식으로 퍼지고 있다. 유튜브는 2005년에 설립된 이후 세계 최고의 동영상 플랫폼으로 성장하면서 전 세계 사람들이 대부분 이용하고 있다. 하지만 유튜브는 가짜뉴스가 퍼지는 주요 창구가 되며 사회적인 문제를 일으키고 있다. 유튜브의 가짜뉴스를 탐지하기 위하여 다양한 학자들이 연구를 진행해 왔다. 가짜뉴스 탐지 연구에는 콘텐츠 기반의 접근과 배경정보 기반의 접근이 존재하는데 기존 가짜뉴스 연구와 유튜브의 가짜뉴스 탐지 연구를 살펴보면 콘텐츠 기반의 접근이 다수를 차지하고 있다. 본 연구에서는 콘텐츠 기반의 가짜뉴스 탐지가 아닌 배경정보 기반의 가짜뉴스 탐지기법을 제안하는데, 그 중에서도 유튜브에서 제공하는 관련 동영상 정보를 활용하여 가짜뉴스를 탐지하는 방법을 제안하고자 한다. 구체적으로 관련 동영상에서 얻은 정보와 원본 동영상에서 얻은 정보를 임베딩 기술인 Doc2vec을 이용하여 벡터화 한 후, 딥러닝 네트워크인 합성곱 신경망(CNN)을 통하여 가짜뉴스를 판별하고자 하였다. 실증분석 결과 제안 기법은 기존의 콘텐츠 기반으로 유튜브 가짜뉴스를 탐지하는 접근에 비해 보다 우수한 예측 성능을 보임을 확인하였다. 이러한 본 연구의 제안 기법은 파급력이 높은 유튜브 상에서 유포되는 가짜뉴스의 전파를 사전에 예방함으로써, 우리사회를 보다 안전하고 신뢰할 수 있도록 만드는데 기여할 수 있을 것으로 기대한다.

언어 모델 기반 음성 특징 추출을 활용한 생성 음성 탐지 (Voice Synthesis Detection Using Language Model-Based Speech Feature Extraction)

  • 김승민;박소희;최대선
    • 정보보호학회논문지
    • /
    • 제34권3호
    • /
    • pp.439-449
    • /
    • 2024
  • 최근 음성 생성 기술의 급격한 발전으로, 텍스트만으로도 자연스러운 음성 합성이 가능해졌다. 이러한 발전은 타인의 음성을 생성하여 범죄에 이용하는 보이스피싱과 같은 악용 사례를 증가시키는 결과를 낳고 있다. 음성 생성 여부를 탐지하는 모델은 많이 개발되고 있으며, 일반적으로 음성의 특징을 추출하고 이러한 특징을 기반으로 음성 생성 여부를 탐지한다. 본 논문은 생성 음성으로 인한 악용 사례에 대응하기 위해 새로운 음성 특징 추출 모델을 제안한다. 오디오를 입력으로 받는 딥러닝 기반 오디오 코덱 모델과 사전 학습된 자연어 처리 모델인 BERT를 사용하여 새로운 음성 특징 추출 모델을 제안하였다. 본 논문이 제안한 음성 특징 추출 모델이 음성 탐지에 적합한지 확인하기 위해 추출된 특징을 활용하여 4가지 생성 음성 탐지 모델을 만들어 성능평가를 진행하였다. 성능 비교를 위해 기존 논문에서 제안한 Deepfeature 기반의 음성 탐지 모델 3개와 그 외 모델과 정확도 및 EER을 비교하였다. 제안한 모델은 88.08%로 기존 모델보다 높은 정확도와 11.79%의 낮은 EER을 보였다. 이를 통해 본 논문에서 제안한 음성 특징 추출 방법이 생성 음성과 실제 음성을 판별하는 효과적인 도구로 사용될 수 있음을 확인하였다.

잠재 토픽 기반의 제품 평판 마이닝 (Latent topics-based product reputation mining)

  • 박상민;온병원
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.39-70
    • /
    • 2017
  • 최근 여론조사 분야에서 데이터에 기반을 둔 분석 기법이 널리 활용되고 있다. 기업에서는 최근 출시된 제품에 대한 선호도를 조사하기 위해 기존의 설문조사나 전문가의 의견을 단순 취합하는 것이 아니라, 온라인상에 존재하는 다양한 종류의 데이터를 수집하고 분석하여 제품에 대한 대중의 기호를 정확히 파악할 수 있는 방안을 필요로 한다. 기존의 주요 방안에서는 먼저 해당 분야에 대한 감성사전을 구축한다. 전문가들은 수집된 텍스트 문서들로부터 빈도가 높은 단어들을 정리하여 긍정, 부정, 중립을 판단한다. 특정 제품의 선호를 판별하기 위해, 제품에 대한 사용 후기 글을 수집하여 문장을 추출하고, 감성사전을 이용하여 문장들의 긍정, 부정, 중립을 판단하여 최종적으로 긍정과 부정인 문장의 개수를 통해 제품에 대한 선호도를 측정한다. 그리고 제품에 대한 긍 부정 내용을 자동으로 요약하여 제공한다. 이것은 문장들의 감성점수를 산출하여, 긍정과 부정점수가 높은 문장들을 추출한다. 본 연구에서는 일반 대중이 생산한 문서 속에 숨겨져 있는 토픽을 추출하여 주어진 제품의 선호도를 조사하고, 토픽의 긍 부정 내용을 요약하여 보여주는 제품 평판 마이닝 알고리즘을 제안한다. 기존 방식과 다르게, 토픽을 활용하여 쉽고 빠르게 감성사전을 구축할 수 있으며 추출된 토픽을 정제하여 제품의 선호도와 요약 결과의 정확도를 높인다. 실험을 통해, K5, SM5, 아반떼 등의 국내에서 생산된 자동차의 수많은 후기 글들을 수집하였고, 실험 자동차의 긍 부정 비율, 긍 부정 내용 요약, 통계 검정을 실시하여 제안방안의 효용성을 입증하였다.

지자체 사이버 공간 안전을 위한 금융사기 탐지 텍스트 마이닝 방법 (Financial Fraud Detection using Text Mining Analysis against Municipal Cybercriminality)

  • 최석재;이중원;권오병
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.119-138
    • /
    • 2017
  • 최근 SNS는 개인의 의사소통뿐 아니라 마케팅의 중요한 채널로도 자리매김하고 있다. 그러나 사이버 범죄 역시 정보와 통신 기술의 발달에 따라 진화하여 불법 광고가 SNS에 다량으로 배포되고 있다. 그 결과 개인정보를 빼앗기거나 금전적인 손해가 빈번하게 일어난다. 본 연구에서는 SNS로 전달되는 홍보글인 비정형 데이터를 분석하여 어떤 글이 금융사기(예: 불법 대부업 및 불법 방문판매)와 관련된 글인지를 분석하는 방법론을 제안하였다. 불법 홍보글 학습 데이터를 만드는 과정과, 데이터의 특성을 고려하여 입력 데이터를 구성하는 방안, 그리고 판별 알고리즘의 선택과 추출할 정보 대상의 선정 등이 프레임워크의 주요 구성 요소이다. 본 연구의 방법은 실제로 모 지방자치단체의 금융사기 방지 프로그램의 파일럿 테스트에 활용되었으며, 실제 데이터를 가지고 분석한 결과 금융사기 글을 판정하는 정확도가 사람들에 의하여 판정하는 것이나 키워드 추출법(Term Frequency), MLE 등에 비하여 월등함을 검증하였다.

영역별 맞춤형 감성사전 구축을 통한 영화리뷰 감성분석 (Sentiment analysis on movie review through building modified sentiment dictionary by movie genre)

  • 이상훈;최정;김종우
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.97-113
    • /
    • 2016
  • 인터넷상의 데이터가 급속하게 증가함에 따라 막대한 양의 데이터를 목적에 맞게 적절히 활용하는 빅데이터 분석이 활발하게 진행되고 있다. 최근에는 기존의 정형 데이터분석이 가진 한계점을 보완하는 방법으로 비정형 데이터 분석 분야 중 하나인 텍스트마이닝 기법에 대한 연구들이 다수 이루어지고 있으며, 특히 텍스트를 기반으로 문장의 긍정, 부정을 판별하고 분류하는 감성분석과 관련된 연구들이 활발하게 이루어지고 있다. 이러한 연구의 연장선 상에서, 본 연구는 감성분석에 사용되는 감성사전을 데이터의 특성에 맞게 적절하게 변형하여 구축하는 방법을 시도하였다. 데이터가 속한 영역의 특성을 고려하지 않은 기존의 범용 감성사전을 감성분석에 사용할 경우, 해당 영역에서 쓰이는 단어 또는 감정 표현을 반영하지 못하므로 감성분석의 정확성이 떨어질 수 있다. 따라서 감성분석에 있어서 영역 맞춤형 감성사전의 사용 시 데이터 영역의 특성을 정확하게 반영해 분석의 정확성을 높여줄 것으로 기대할 수 있다. 본 연구에서는 영화 리뷰 데이터를 분석 대상으로 선정하였으며, 대표적 영화정보 사이트 IMDb에서 발생된 약 2년간의 영화리뷰 데이터를 수집 분석하였다. 분석에 앞서 영화 장르별 사용되는 단어의 의미가 각각 다를 것을 고려하여 영화를 '액션', '애니메이션', '코메디', '드라마', '공포', '과학공상' 6개 장르로 분류했다. 맞춤형 감성사전 구축을 위한 핵심 기법으로 SO-PMI(Semantic Orientation from Point-wise Mutual Information)를 활용하였으며, 어휘 간 극성이 뚜렷하게 구분되는 형용사에 한정하여 연구를 진행했다. 분석결과 맞춤형사전을 활용한 감성분석 예측정확도는 영화 장르별로 상이했다. '애니메이션'을 제외한 5개 장르에서 기존의 범용 감성사전대비 맞춤형 감성사전의 예측정확도가 통계적으로 유의한 수준의 성능 향상을 보였다. 본 연구에서는 데이터 영역의 특성에 맞는 맞춤형 사전 구축을 통한 감성분석의 예측의 성능 향상을 확인하였다. 향후 감성사전 구축 시 동사, 부사 등 다양한 품사의 어휘를 추가하여 감성분석 예측정확도를 높이는 방안을 모색할 수 있을 것이다.

주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안 (Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary)

  • 유은지;김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.95-110
    • /
    • 2013
  • 최근 다양한 소셜미디어를 통해 생성되는 비정형 데이터의 양은 빠른 속도로 증가하고 있으며, 이를 저장, 가공, 분석하기 위한 도구의 개발도 이에 맞추어 활발하게 이루어지고 있다. 이러한 환경에서 다양한 분석도구를 통해 텍스트 데이터를 분석함으로써, 기존의 정형 데이터 분석을 통해 해결하지 못했던 이슈들을 해결하기 위한 많은 시도가 이루어지고 있다. 특히 트위터나 페이스북을 통해 실시간에 근접하게 생산되는 글들과 수많은 인터넷 사이트에 게시되는 다양한 주제의 글들은, 방대한 양의 텍스트 분석을 통해 많은 사람들의 의견을 추출하고 이를 통해 향후 수익 창출에 기여할 수 있는 새로운 통찰을 발굴하기 위한 움직임에 동기를 부여하고 있다. 뉴스 데이터에 대한 오피니언 마이닝을 통해 주가지수 등락 예측 모델을 제안한 최근의 연구는 이러한 시도의 대표적 예라고 할 수 있다. 우리가 여러 매체를 통해 매일 접하는 뉴스 역시 대표적인 비정형 데이터 중의 하나이다. 이러한 비정형 텍스트 데이터를 분석하는 오피니언 마이닝 또는 감성 분석은 제품, 서비스, 조직, 이슈, 그리고 이들의 여러 속성에 대한 사람들의 의견, 감성, 평가, 태도, 감정 등을 분석하는 일련의 과정을 의미한다. 이러한 오피니언 마이닝을 다루는 많은 연구는, 각 어휘별로 긍정/부정의 극성을 규정해 놓은 감성사전을 사용하며, 한 문장 또는 문서에 나타난 어휘들의 극성 분포에 따라 해당 문장 또는 문서의 극성을 산출하는 방식을 채택한다. 하지만 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다. 본 연구는 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다는 인식에서 출발한다. 동일한 어휘의 극성이 해석하는 사람의 입장에 따라 또는 분석 목적에 따라 서로 상이하게 해석되는 현상은 지금까지 다루어지지 않은 어려운 이슈로 알려져 있다. 구체적으로는 주가지수의 상승이라는 한정된 주제에 대해 각 관련 어휘가 갖는 극성을 판별하여 주가지수 상승 예측을 위한 감성사전을 구축하고, 이를 기반으로 한 뉴스 분석을 통해 주가지수의 상승을 예측한 결과를 보이고자 한다.

인의 흡착능 평가를 통한 인공습지 하수처리 시스템의 여재 선발 (Screening of the Optimum Filter Media in the Constructed Wetland Systems through Phosphorus Adsorption Capacities)

  • 이홍재;서동철;조주식;허종수
    • 한국환경농학회지
    • /
    • 제22권2호
    • /
    • pp.148-152
    • /
    • 2003
  • 인공습지 하수처리장에 축적되어 하수처리장 수명의 제한인자로 작용하는 인의 포화치를 조사하기 위해 여재 입경별 최대 인 흡착능을 조사하여 최적의 여재를 선정하였고, 또한 유기물과 굴패각의 인 흡착제로서 사용가능 여부를 조사하기 위해 최대 인 흡착능을 조사하였다. 그리고 인공습지 하수처리장에서 하수처리장의 수명을 연장하기 위한 방안을 검토하기 위해 여재별로 흡착제인 유기물 양을 달리하여 최대 인 흡착능을 조사하였고, 최적으로 선정된 여재에 Ca, Mg, Al, Fe 및 굴패각 첨가에 따른 최대 인 흡착능을 조사하였다. 여재 입경별 최대 인 흡착능을 조사한 결과 여재 입경이 작아질수록 최대 인 흡착능이 증가하는 경향으로 여재 대($4{\sim}10\;mm$), 중 ($2{\sim}4\;mm$) 및 소($0.1{\sim}2\;mm$)의 최대 인 흡착능은 각각 8, 10 및 22 mg/kg로서 여재 입경이 $0.1{\sim}2\;mm$인 여재소(C)가 최적의 여재이었고, 유기물과 굴패각의 최대 인 흡착능을 조사한 결과 유기물이 1,00 mg/kg 및 굴패각이 833mg/kg이었다. 입경별 여재에 유기물을 첨가하였을 경우 모든 여재에서 유기물 첨가량이 증가할수록 최대 인 흡착능이 점점 증가하였다. 따라서 인공습지 하수처리장에서 수초에 의해 쌓여 부식된 유기물은 인의 흡착능을 증가시켜 인 처리능력을 향상시킬 수 있을 것이라 사료되었다. 최적 여재인 여재 소(C)에 Ca, Mg, Al 및 Fe를 첨가하였을 경우 모든 조건에서 첨가량이 증가할수록 최대 인 흡착능도 점점 증가하였으며, 특히 Ca 0.1% 첨가시 인 흡착능이 885 mg/kg으로 급격히 증가하였다. 굴패각을 여재에 첨가하여 흡착능을 조사한 결과 굴패각을 2% 첨가시 인 흡착능이 약 22 mg/kg에서 약 36 mg/kg으로 약 14 mg/kg이 증가하였다.기의 텍스트 레이아웃 디자인에 충분히 활용 가능할 것으로 기대된다.강조하고 있으나 친환경성이 입증되지 않은 제품에 대해서도 친환경 소재임을 내세워 소비자의 판단을 흐리는 경우가 많으므로 이에 대한 시정이 필요하다.칼리를 시용한 구보다 유의하게 높았는데(p<0.05), 이러한 경향은 이른 봄에 액상구비를 시용한 구에서 더욱 뚜렷하였다. 불과하였고 설명 후 이의 필요성에 대하여 묻는 질문에는 135명(71.4%)이 필요하다고 하였으며 동의서의 길이가 길어진다면 스스로 읽겠다(30명, 15.9%)기보다는 84.1%가 구두설명의 필요성을 요구하고 있었다. 임상시험시 발생하는 부작용 또는 문제점의 발생시 의사나 회사에 책임을 묻겠다는 대답이 76명(40.2%)으로 이 중 17명(9.0%)은 시비를 가리지 않고 무조건 책임을 묻겠다고 하였다. 결 론 : 본 설문조사는 임상시험과 피험자 동의서에 대한 가장 기초적인 설문 조사로 대상인 암환자와 가족들이 비교적 정확하고 긍정적인 견해를 가지고 있었으나 임상시험과 피험자 동의서에 대한 보다 적극적인 홍보와 교육이 필요하며 피험자동의서의 간편성과 이해력의 향상에 대한 연구가 요구됨을 보여주었다. 논평하였음을 퇴계는 '완세불공(玩迷不恭)'이라고 판단했을 것이다. 장육당은 청(淸)과 탁(濁)이 있음을 알지 못하고. 그것의 분별도 하지 못하는 세상 사람들을 완농(玩弄)하였다. 그러므로 그는 진환(塵 )에서 초연(超然)했던 것이다. 천석고황(泉石膏 )으로 태평성대(太平聖代)에 사시가흥(四時佳興)을 한가지로 하는 퇴계와는 그래서 다르다. 퇴계는 순풍(淳風)과 어진 인성(人性)을 긍정하였기에 만족하고. '고인(古人)의 녀던 길'을 끊임없이 행(行)하고자 하였다. 여기에서 '완세불공(玩世不恭)'과 '온유돈후(溫柔敦厚)'가 판별되어진다. 장육당이 '완세불공(玩世不恭)'했다면, 그것은 자취(自取)한 것이요. 퇴계의 '온유돈후(溫柔敦厚)'함도 스스로 취한 태도이다. 이 자취(自取)