• 제목/요약/키워드: 텍스트 판별

검색결과 62건 처리시간 0.024초

한국어 학습자 말뭉치의 모어 판별 (Native Language Identification for Korean Learner Corpus)

  • 허희정;정승연;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.300-304
    • /
    • 2021
  • 모어 판별이란 제 2 언어를 습득하는 학습자들이 생산한 목표 언어에 기반하여 학습자들의 제 1 언어를 자동적으로 확인하는 작업을 말한다. 모여 판별 과제를 성공적으로 수행하기 위한 방법을 다룬 다양한 연구들이 진행되어 왔으나, 한국어를 대상으로 진행된 모어 판별 연구는 그 수가 극히 적다. 본 연구에서는 한국어 학습자 텍스트를 대상으로 머신 러닝, 딥 러닝의 다양한 문서 분류 모델을 실험하고, 이를 통해 한국어 학습자 텍스트 모어 판별을 위해 적합한 모델을 구축하기 위해 필요한 조건을 찾아보고자 하였다.

  • PDF

빈도 정보를 이용한 저자 판별: 조선일보 4인 칼럼을 대상으로 (Authorship Attribution in Korean Using Chosun Ilbo Column Texts)

  • 한나래
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.29-34
    • /
    • 2008
  • 본고에서는 빈도 정보를 이용한 저자 판별 (authorship attribution) 기법을 한국어에 적용한 연구를 소개한다. 그 대상으로는 정형화된 장르인 신문 칼럼을, 구체적으로는 조선일보에 연재 중인 4인 칼럼니스트들의 각 40개 칼럼, 총 160개 칼럼 텍스트를 선정하였다. 이들에 대하여 어절, 음절, 형태소, 각 단위 2연쇄 등의 다양한 언어 단위들의 빈도 정보들을 이용한 저자 판별을 시도한 결과, 형태소 빈도를 기반으로 하여 최고 93%를 넘는 높은 예측 정확도를 얻을 수 있었다. 또한, 저자 개인 문체간의 거리도 빈도 정보로써 계량적 표상이 가능함을 보일 수 있었다. 이로써 빈도 분석과 같은 통계적, 계량적 방법을 통하여 한국어 텍스트에 대한 성공적인 저자 판별과 개인 문체의 정량화가 가능하다는 결론을 내릴 수 있다.

  • PDF

트랜스포머와 판별기를 이용한 비병렬 데이터의 텍스트 스타일 변환 (Text Style Transfer of Non-parallel Data using Transformer and Discriminator)

  • 박다솔;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.64-68
    • /
    • 2020
  • 텍스트 스타일 변환은 문장 내 컨텐츠는 유지하면서 문장의 스타일을 변경하는 것이다. 스타일의 정의가 모호하기 때문에 텍스트 스타일 변환에 대한 연구는 대부분 지도 학습으로 진행되어왔다. 본 논문에서는 병렬 데이터 구축이 되지 않은 데이터를 학습하기 위해 비병렬 데이터를 이용하여 스타일 변환을 시도한다. 트랜스포머 기반의 문장 생성기를 이용하여 문장을 생성하고, 해당 스타일을 분류하는 판별기로 이루어진 모델을 제안한다. 제안 모델을 통해, 감정 변환의 성능은 정확도(Accuracy) 56.9%, self-BLEU 0.393(긍정→부정), 0.366(부정→긍정), 유창성(fluency) 798.23(긍정→부정), 1381.05(부정→긍정)을 보였다. 본 연구는 비병렬 데이터에 대해 스타일 변환을 적용함으로써, 병렬 데이터가 없는 다양한 도메인에도 적용가능 할 것이다.

  • PDF

빈도 정보를 이용한 한국어 저자 판별 (Authorship Attribution in Korean Using Frequency Profiles)

  • 한나래
    • 인지과학
    • /
    • 제20권2호
    • /
    • pp.225-241
    • /
    • 2009
  • 본고에서는 빈도 정보를 이용한 저자 판별 (authorship attribution) 기법을 한국어에 적용한 연구를 소개한다. 그 대상으로는 정형화된 장르인 신문 칼럼을, 구체적으로는 조선일보에 연재 중인 4인 칼럼니스트들의 각 40개 칼럼, 총 160개 칼럼 텍스트를 선정하였다. 이들에 대하여 어절, 음절, 형태소, 각 단위 2연쇄 등의 다양한 언어 단위들의 빈도 정보들을 이용한 저자 판별을 시도한 결과, 형태소 빈도를 기반으로 하여 최고 93%를 넘는 높은 예측 정확도를 얻을 수 있었다. 또한, 저자 개인 문체간의 거리도 빈도 정보로써 계량적 표상이 가능함을 보일 수 있었다. 이로써 빈도 분석과 같은 통계적, 계량적 방법을 통하여 한국어 텍스트에 대한 성공적인 저자 판별과 개인 문체의 정량화가 가능하다는 결론을 내릴 수 있다.

  • PDF

웹 문서의 형태적 특징 인식에 기반한 SOFT 404 오류 판별 (Detection of Soft 404 Errors based on Visual Characteristics of Web Page)

  • 임재형;추승화
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.382-385
    • /
    • 2018
  • Dead Link의 노출 최소화는 웹 검색 서비스의 품질 유지에 있어 매우 중요하다. 따라서 색인 내 Soft 404 오류의 정확한 판별은 필수적이지만, 리다이렉션 정보에 의존하거나 텍스트 혹은 HTML 자질 만을 고려하는 기존 방법의 활용만으로는 판별 가능한 Soft 404 오류의 유형이 한정될 수 있다는 문제가 있다. 이에 본 연구에서는 보다 범용성이 높은 Soft 404 오류 판별 기술의 개발을 위해, 404 오류 안내 페이지 고유의 형태적 특성을 오류 판별에 사용할 것을 제안한다. 제안 방법은 오류 안내 문서의 형태적 특성을 이미지 인식 모형에 기반해 학습한 후 이를 Soft 404 오류 판별에 사용하며, 리다이렉션 등 특정 정보에 의존하는 기존 방법에 비해 보다 폭넓게 적용 가능하다는 장점이 있다. 실험에서 제안 방법은 87.6%의 정확률과 92.7%의 재현율을 기록하는 등 높은 인식 성능을 보였다.

  • PDF

테이블 내의 호목단 구조 판별 자동화에 대한 연구 (A Study on Automated HoMokDan Structure Determination in Table)

  • 조성수;김명호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.295-297
    • /
    • 2012
  • 현재 법률과 관련된 문서들은 변경 사항 에 대한 공표와 기록의 중요성을 가지고 있다. 따라서 변경사항을 자동으로 인지하고 공표할 수 있는 자동화 시스템에 대한 관심과 연구가 진행되고 있다. 그러나 대부분의 문서들은 복잡한 구조이기 때문에 자동화에 어려움이 많다. 이로 인해 복잡한 구조의 문서를 자동으로 판별할 수 있는 방법에 관한 관심이 증대되고 있다. 현재 국내외에서는 전자 문서 파일의 텍스트 및 테이블을 판별해서 분류 하는 자동화에 대한 연구가 진행되고 있다. 하지만 이전 연구에서는 호목단 구조를 갖는 계층적인 테이블을 판별하지 않는다. 그래서 본 논문에서는 호목단을 정의하고, 테이블의 호목단 구조를 패턴 별로 분류 하며, 테이블의 호목단 구조 판별 방법을 제시한다.

필적 및 서명에 대한 Off-line 자동분석시스템 (The Off-line Verification System of Signature of Handwrite)

  • 김세훈;하정요;김계영;최형일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 3부
    • /
    • pp.189-193
    • /
    • 2007
  • 필적 감정은 개인의 고유한 필적 개성을 이용하여 임의의 두 필기 문장 또는 텍스트가 동일인에 의해 작성되었는지를 판별하는 기술로 유서대필 및 보안수사, 서명의 검증, 범죄 수사 등에 활용되어지고 있다. 이러한 작업은 감정 전문가의 판단기준에 의해 필적의 유사성을 판별하기 때문에 객관성 결여 및 과도한 소요 시간, 과도한 처리비용의 문제를 내포하게 된다. 이러한 문제를 해결하여 판별의 객관성과 업무의 신속한 처리를 가능하게 하기 본 논문에서는 컴퓨터를 통한 패턴 분석을 적용하여 두 필적의 유사성을 판별하는 방법을 본 논문에서는 제안한다. 이를 위하여 본 논문은 학습단계와 자동분석단계로 나뉘며, 학습단계에서는 입력된 문서영상에서 필적의 영역을 추출한 후, 특징을 추출하고 DTW연산을 통하여 학습을 한다. 자동분석단계에서는 대조할 문서영상에서의 특징을 추출하고 입력된 문서영상과 대조할 문서영상간의 마할라노비스 거리(Mahalanobis Distance)를 구하여 서명 및 필적에 대한 유사도를 도출한다. 실험은 4명의 필적을 이용하여 비교하였으며, 우수한 결과를 보였다.

  • PDF

음소 단위 임베딩 모형을 이용한 감성 분석 (Sentimental Analysis using the Phoneme-level Embedding Model)

  • 현경석;최우성;정순영;정재화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.1030-1032
    • /
    • 2019
  • 형태소 분석을 통하여 한국어 문장을 형태소 단위의 임베딩 및 학습 관련 연구가 되었으나 최근 비정형적인 텍스트 데이터의 증가에 따라 음소 단위의 임베딩을 통한 신경망 학습에 대한 요구가 높아지고 있다. 본 논문은 비정형적인 텍스트 감성 분석 성능 향상을 위해 음소 단위의 토큰을 생성하고 이를 CNN 모형을 기반으로 다차원 임베딩을 수행하고 감성분석을 위하여 양방향 순환신경망 모델을 사용하여 유튜브의 비정형 텍스트를 학습시켰다. 그 결과 텍스트의 긍정 부정 판별에 있어 90%의 정확도를 보였다.

오류가 발생한 멀티바이트 인코딩 데이터의 인코딩 기법 판별 알고리즘 개선 (Improvement of Encoding Detection Algorithm for Multi-byte Encoded Data with Errors)

  • 배준우;김선범;박희진
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권2호
    • /
    • pp.18-25
    • /
    • 2017
  • 인코딩(encoding)은 컴퓨터에서 사용되는 음성, 영상 및 텍스트 문자를 부호화하는 방법을 가리킨다. 그러므로 특정 데이터를 열람하기 위해서는 해당 인코딩 정보를 알아야하며, 데이터마다 인코딩을 판별해주는 알고리즘들이 존재한다. 하지만 실제 음원이나 문서를 송수신하는 과정에서 패킷 손실이 발생할 수 있으며, 특히 무선 통신망에서 패킷 스니핑으로 정보를 가로챌 경우 손실률은 더욱 증가되어 인코딩 기법 판별에 어려움이 발생한다. 본 논문에서는 이러한 오류가 발생한 데이터의 인코딩 기법 판별율을 향상시키기 위해 기존의 문자 인코딩 기법 판별 프로그램인 'uchardet'에 Bit-shift 알고리즘을 적용하여 성능 향상을 이루었다. 알고리즘의 성능 평가를 위해 임의의 한글 및 일본어 텍스트 파일에 손실률(loss rate)을 적용하여 부분적으로 데이터가 소실된 인코딩 파일을 생성하여 결과를 비교하였다. 그 결과, 패킷이 손실된 데이터에서 Bit-shift 알고리즘을 적용한 'uchardet-bitshift' 경우 기존의 알고리즘보다 더 나은 성능을 보였다. 한국어 인코딩의 경우 기존의 uchardet는 0.005% 손실률까지 100%의 정확도를 보이고 1%보다 높은 손실률에서는 인코딩을 전혀 판별해 내지 못한데 비해, Bit-shift 알고리즘을 적용할 경우 0.05%의 손실률에도 100%의 정확도를 보였으며 그보다 큰 손실률에서도 해당 인코딩을 판별해냈다. 또한 한자어를 많이 포함하는 일본어의 경우 손실률이 높아질수록 중국어 인코딩으로 잘못 판별하는 경향을 보였다. 시뮬레이션 분석 결과, Bit shift 알고리즘을 추가하여 기존 인코딩 기법 판별 알고리즘의 개선이 가능하였다.

등급에 따른 웹 유해 문서 분류 기술 (A Distinction Technology for Harmful Web Documents by Rates)

  • 김영수;남택용;원동호
    • 정보처리학회논문지C
    • /
    • 제13C권7호
    • /
    • pp.859-864
    • /
    • 2006
  • 웹의 개방성은 사람들로 하여금 언제, 어디서든 손쉽게 유용한 정보를 획득할 수 있게끔 하였다. 하지만 인터넷은 유용한 정보의 손쉬운 활용이라는 순기능과 더불어 사회적으로 통제를 필요로 하는 유해한 정보 역시 인터넷을 이용하는 이용자들에게 무차별적으로 제공함으로써 역기능을 발생시키고 있다. 성인 컨텐츠 같은 정보들은 모든 사용자들, 특히 청소년들에게 악영향을 미칠 수 있다. 또한, 변태적인 성인 사이트들이 담고 있는 컨텐츠들은 성인들의 정신 건강에도 해를 미치게 된다. 한편, 인터넷은 전 세계적으로 연결된 개방망이므로 유해정보 제공자를 각국의 법적, 제도적 장치를 이용하여 규제하는데 한계가 있다. 또한, 유해 사이트, 유해성 스팸 메일, P2P 등 다양한 경로를 통해 유해 정보를 접할 수 있기 때문에, 어떤 시스템에 특화된 유해정보 분류기술을 개발하는 것은 바람직하지 않다. 따라서, 유해정보의 내용 자체에 기반하여 유해 여부를 자동으로 판별할 수 있는 유해정보 판별 핵심 기술의 연구 및 개발의 중요성이 점차 부각되고 있다. 이에 본 논문에서는 내용 기반 기술을 이용한 효율적인 유해 웹 문서 텍스트 판별 시스템을 제시한다.