• 제목/요약/키워드: 텍스트 특징

검색결과 545건 처리시간 0.033초

하이퍼텍스트 문서의 자동분류를 위한 워드넷 기반 특징 합병 기법 (A WordNet-based Feature Merge Method for HyperText Classification)

  • 노준호;김한준;장재영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.406-409
    • /
    • 2012
  • 본 논문은 하이퍼텍스트 문서의 자동분류 성능을 높이기 위한 새로운 접근법을 제시한다. 하이퍼텍스트 문서는 일반 문서와 달리 하이퍼링크로 서로 연결된 구조를 가진다. 이 하이퍼링크 정보는 대상문서와 연관도가 높은 정보를 가지고 있으며, 이러한 링크 정보로부터 특징을 보다 잘 선별하기 위해서는 보다 정밀한 접근법이 필요하다. 본 논문은 단어간 의미 유사도를 기반으로 하이퍼텍스트 링크 정보를 활용한 특징 가공기법을 제안한다. 제안 기법은 하이퍼링크 문서로부터 대상문서와 연관도가 높은 특징을 추출하기 위해 단어간 유사도 함수를 사용하며, 유사도 함수는 워드넷의 상/하위어 관계를 이용한다. 그리고 추출된 특징들 중 의미적으로 비슷한 개념의 특징들을 합병함으로써 의미적으로 보다 견고한 분류 모델을 구축한다. 제안 기법을 검증하기 위해 Web-KB 문서집합을 이용하여 실험을 수행하였고 실험 결과 기존 방법보다 우수한 성능을 보였다.

딥러닝 기반의 회전에 강인한 텍스트 검출 기법 (Rotation-robust text localization technique using deep learning)

  • 최인규;김제우;송혁;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.80-81
    • /
    • 2019
  • 본 논문에서는 자연스러운 장면 영상에서 임의의 방향성을 가진 텍스트를 검출하기 위한 기법을 제안한다. 텍스트 검출을 위한 기본적인 프레임 워크는 Faster R-CNN[1]을 기반으로 한다. 먼저 RPN(Region Proposal Network)을 통해 다른 방향성을 가진 텍스트를 포함하는 bounding box를 생성한다. 이어서 RPN에서 생성한 각각의 bounding box에 대해 세 가지의 서로 다른 크기로 pooling된 특징지도를 추출하고 병합한다. 병합한 특징지도에서 텍스트와 텍스트가 아닌 대상에 대한 score, 정렬된 bounding box 좌표, 기울어진 bounding box 좌표를 모두 예측한다. 마지막으로 NMS(Non-Maximum Suppression)을 이용하여 검출 결과를 획득한다. COCO Text 2017 dataset[2]을 이용하여 학습 및 테스트를 진행하였으며 주관적으로 평가한 결과 기울어진 텍스트에 적합하게 회전된 영역을 얻을 수 있음을 확인하였다.

  • PDF

텍스트 기반 감정 추정을 위한 특징 추출 및 선택기법에 따른 성능 연구 (Study of the text analysis and feature selection performance for emotional inference)

  • 김한주;하헌석;박승현;윤성로
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.876-878
    • /
    • 2014
  • 인터넷 사용량이 급증하고 사용자들이 생성하는 데이터의 양이 증가함에 따라 사용자 데이터 분석은 객관적인 정보 탐색과 분석을 넘어 주관적인 감정을 분석하는 데까지 시도되고 있다. 이러한 감정 분석은 사업, 행정, 외교 등의 다양한 분야에 걸쳐 용용 될 수 있다. 본 연구에서는 텍스트 데이터를 주요 분석 대상으로 하여 문장 구성의 다양한 요소를 특징화하고, 특징화된 문장에 대해 다양한 서포트 벡터머신을 통한 학습을 시도함으로써 텍스트가 내포한 감정을 추측한다. 다양한 특징화 방법을 적용하되, 낮은 밀도가 될 것으로 추측되는 데이터 매트릭스의 차원 감쇄를 위해 정보엔트로피 기반의 특징 선택기법을 적용한다.

이동 단말을 위한 웹 기반 텍스트 요약 시스템의 설계 및 구현 (Design and Implementation of Web-based Text Summarization System for Mobile Device)

  • 차지은;천승만;박종태
    • 정보처리학회논문지C
    • /
    • 제16C권6호
    • /
    • pp.725-730
    • /
    • 2009
  • 최근에 스마트폰과 같은 소형 이동 단말기의 보급이 확산됨에 따라 이동 단말을 통한 인터넷 웹 접속이 크게 증가하고 있다. 하지만 이동 단말의 작은 화면은 한 번에 웹페이지의 전체 내용을 브라우징 하기에는 어려움이 있다. 본 논문에서 이러한 이동단말의 문제점을 해결하기 위한 웹 기반 텍스트 요약 시스템을 설계 및 구현하였다. 제안된 텍스트 요약 시스템의 특징은 문서의 구문적 특징을 크게 변화시키지 않고 다량의 텍스트가 단락 안에 존재하는 경우에 문서를 요약하여 텍스트 용량을 줄임으로써 웹 브라우징에 있어 데이터 전송량을 줄이고 빠른 접근과 불필요한 데이터의 출력을 최소화할 수 있다. 제안된 시스템의 특징을 구현을 통하여 확인하였다.

환경 빅데이터 이슈 분석을 위한 용어 가중치 기법 비교 (Comparison of Term-Weighting Schemes for Environmental Big Data Analysis)

  • 김정진;정한석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.236-236
    • /
    • 2021
  • 최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.

  • PDF

주파수 에너지를 이용한 텍스트 독립 화자인식에 관한 연구 (A Study on the Text-Independent Speaker Recognition Using Frequency Energy)

  • 조연아
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.235-240
    • /
    • 1994
  • 모음 검출을 통하여 미리 등록한 단어가 아닌 경우에도 화자를 인식할 수 있도록 특징 파라메터를 개발하고, 실용화가 가능하도록 처리 방법을 간략화한 텍스트 독립 화자 인식 연구를 진행하였다. 이를 위해서, 화자가 발성한 음성에서 모음을 검출하여 화자인식에 사용하는 방법을 제안하였으며, 인식은 각 화자가 발성한 음성 신호에서 모음을 검출한 다음, 검출된 모음의 29 채널의 주파수 에너지를 퍼지값으로 효현한 후, 퍼지 추론을 적용하여 수행하였다. 실험을 위해 모음 검출 알고리듬을 개발하였으며, 화자인식의 특징 파라메터로 29 채널 주파수 에너지를 제안하였는데, 별도의 코드북 없이 사용이 가능하고, 기존의 파라메터에 비해 인식율이 높으면서도 구성 및 계산이 간단한 특징이 있다. 실험결과, 미리 작성된 표준패턴과 동일한 단어를 사용한 텍스트 의존 화자 인식 실험은 95.5% 인식율을 보였고, 표준 패턴과 다른 종류의 단어를 사용한 텍스트 독립 화자인식 실험은 94.2% 인식율을 보이고 있다.

  • PDF

그래프 기반 텍스트 마이닝의 연구 동향 (Research Trends of Graph-Based Text Mining)

  • 장재영;한종빈;좌태빈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1074-1077
    • /
    • 2013
  • 텍스트 마이닝은 비정형 데이터를 가정하므로 텍스트를 단순화된 모델로 표현하는 것이 필요하다. 현재까지 가장 많이 사용되고 있는 모델은 텍스트를 단순한 단어들의 집합으로 표현한 벡터공간 모델이다. 그러나 최근 들어 단어들의 의미적 관계까지 표현하기 위해 그래프를 이용한 텍스트 표현 모델을 많이 사용하고 있다. 본 논문에서는 텍스트 마이닝을 위한 기존의 연구 중에서 그래프에 기반한 텍스트 표현 모델의 방법들과 그들의 특징들을 주제별로 제시한다.

텍스트 문서 인식을 위한 학습 기반 단어 분할 (Learning-based Word Segmentation for Text Document Recognition)

  • 로말리자쟝피에르;문광석;박한훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.41-42
    • /
    • 2018
  • 텍스트 문서 영상으로부터 단어를 검출하고, LLAH(locally likely arrangement hashing) 알고리즘을 이용하여 이웃 단어 사이의 기하 관계를 표현하는 특징 벡터를 계산한 후, 특징 벡터를 비교함으로써 텍스트 문서를 효과적으로 인식하거나 검색할 수 있다. 그러나, 이는 문서 내 각 단어가 정확하고 강건하게 검출된다는 전제를 필요로 한다. 본 논문에서는 텍스트 내 각 라인을 검출하고, 각 라인 내에서 단어 사이의 간격과 글자 사이의 간격을 깊은 신경망(deep neural network)을 이용하여 학습하고 분류함으로써, 보다 카메라와 텍스트 문서 사이의 거리나 방향이 동적으로 변하는 조건에서 각 단어를 강건하게 검출하는 방법을 제안한다. 모바일 환경에서 제안된 방법을 구현하였으며, 실험을 통해 단어 사이의 간격과 글자 사이의 간격을 92.5%의 정확도로 구별할 수 있으며, 이를 통해 동적인 환경에서 단어 검출의 강건성을 크게 개선할 수 있음을 확인하였다.

  • PDF

색 변화 특징을 이용한 자연이미지에서의 장면 텍스트 추출 (Scene Text Extraction in Natural Images Using Color Variance Feature)

  • 송영자;최영우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1835-1838
    • /
    • 2003
  • 이미지에 포함되어 있는 텍스트들은 이미지의 내용을 함축적이며 구체적으로 표현하는 정보를 갖고 있다. 본 논문에서는 이러한 정보를 정확히 추출하기 위해서 색 변화 특징을 이용한 텍스트 영역 추출 방법을 제안한다. 관찰에 의하면 이미지 내의 텍스트들은 주변 배경과의 색 변화가 존재하며, 이러한 색 변화를 3차원 RGB공간에서 표현한다면, 명도이미지에서의 밝기 변화에서 표현하기 어려운 영역들을 강조시킬 수 있으며, 조명 변화에도 민감하지 않은 결과를 만들어 낼 수 있다. 색 변화 정도는 3차원 RBG 공간에서의 색 분산(Variance)으로 측정한다 처리 과정으로서 우선 수평 및 수직 방향의 분산 이미지를 구하는데, 텍스트 영역은 두 방향의 분산 값이 모두 높은 특징이 있다. 다음으로 두 결과의 논리적 AND 연산을 수행하여 불필요한 잡영들을 제거한 후 연결요소를 분석, 검증하여 영역을 최종 확정한다. 다양한 종류의 자연이미지로 제안한 방법을 검증한 결과 밝기 변화 또는 색 연속성 특징들을 이용한 방법에서 찾기 어려운 텍스트 영역들을 찾을 수 있는 것을 확인할 수 있었다.

  • PDF

에지 및 컬러 양자화를 이용한 모바일 폰 카메라 기반장면 텍스트 검출 (Mobile Phone Camera Based Scene Text Detection Using Edge and Color Quantization)

  • 박종천;이근왕
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.847-852
    • /
    • 2010
  • 자연 영상 내에 포함된 텍스트는 영상의 다양하고 중요한 특징을 갖는다. 그러므로 텍스트를 검출하고 추출하여 인식하는 것이 중요한 연구대상으로 연구되고 있다. 최근 모바일 폰 카메라를 기반으로 다양한 분야에서 많은 응용 기술이 연구 개발되고 있다. 본 논문은 에지 및 연결요소를 이용한 장면 텍스트 검출 방법을 제안한다. 그레이스케일 영상으로부터 에지 성분 검출과 지역적 표준편차를 이용하여 텍스트 영역의 경계선을 검출하고, RGB 컬러공간의 유클리디안 거리를 기준으로 연결요소를 검출한다. 검출된 에지 및 연결요소를 레이블링하고 각각 영역의 외곽사각형을 구한다. 텍스트의 휴리스틱 이용하여 후보 텍스트를 추출한다. 후보 텍스트 영역을 병합하여 하나의 후보 텍스트 영역을 생성하고, 후보 텍스트의 지역적 인접성과 구조적 유사성으로 후보 텍스트를 검증함으로서 최종적인 텍스트 영역을 검출하였다. 실험결과 에지 및 컬러 연결요소 특징을 상호 보완함으로서 텍스트 영역의 검출률을 향상시켰다.