• Title/Summary/Keyword: 텍스트 특징

Search Result 545, Processing Time 0.025 seconds

Text Extraction using Character-Edge Map Feature From Scene Images (장면 이미지로부터 문자-에지 맵 특징을 이용한 텍스트 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Kwon, Kyo-Hyun;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.139-142
    • /
    • 2006
  • 본 연구는 장면 이미지로부터 텍스트에 존재하는 문자-에지 특징을 이용하여 텍스트를 추출하는 방법을 제안한다. 캐니(Canny)에지 연산자를 이용하여 장면 이미지로부터 에지를 추출하고, 추출된 에지로부터 16종류의 에지-맵 생성한다. 생성된 에지 맵을 재구성하여 문자 특징을 갖는 8종류의 문자-에지 맵을 만단다. 텍스트는 배경과 잘 분리되는 특징이 있으므로 텍스트에 존재하는 '문자-에지 맵'의 특징을 이용하여 텍스트를 추출한다. 텍스트 영역에 대한 검증은 문자-에지 맵의 분포와 텍스트에 존재하는 글자간의 공백 특징으로 한다. 제안한 방법은 다양한 종류의 장면 이미지를 실험대상으로 하였고, 텍스트는 적어도 2글자 이상으로 구성된다는 제한조건과 너무 크거나 작은 텍스트는 텍스트 추출에서 제외하였다. 실험결과 텍스트 영역 추출률은 약 83%를 얻었다.

  • PDF

Hangul Text Detection using Text Corner Edge Feature Analysis in Natural Scene Images (자연영상에서 코너 에지 특징 분석방법을 이용한 한글 텍스트 검출기법에 관한 연구)

  • Park Jong-Cheon;Kwon Kyo-Hyun;Jun Byung-Min
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.379-383
    • /
    • 2005
  • 본 연구에서는 자연 이미지에서 한글 텍스트가 갖고 있는 에지 코너 특징을 이용한 한글 텍스트 검출방법을 제안한다. 자연영상으로부터 에지를 검출하고, 검출된 에지를 20종류의 에지 구조 성분을 갖는 에지 맵을 생성한다. 생성된 에지 맵에서 한글 텍스트 특징 갖는 특징들을 조합하여 모두 8가지의 텍스트 영역 후보 특징을 추출한다. 추출된 텍스트 영역의 특징을 수평 및 수직방향으로 검사하여 텍스트의 시작 라인과 끝라인을 검출하여 텍스트 영역의 수평좌표를 구한다. 추출된 텍스트 후보 영역에서 최종적으로 텍스트 영역을 결정한다. 제안한 방법은 다양한 종류의 자연 이미지에서 텍스트 영역을 검출에서 좋은 성능을 나타냈다.

  • PDF

Scene Text Extraction in Natural Images using Hierarchical Feature Combination and Verification (계층적 특징 결합 및 검증을 이용한 자연이미지에서의 장면 텍스트 추출)

  • 최영우;김길천;송영자;배경숙;조연희;노명철;이성환;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.420-438
    • /
    • 2004
  • Artificially or naturally contained texts in the natural images have significant and detailed information about the scenes. If we develop a method that can extract and recognize those texts in real-time, the method can be applied to many important applications. In this paper, we suggest a new method that extracts the text areas in the natural images using the low-level image features of color continuity. gray-level variation and color valiance and that verifies the extracted candidate regions by using the high-level text feature such as stroke. And the two level features are combined hierarchically. The color continuity is used since most of the characters in the same text lesion have the same color, and the gray-level variation is used since the text strokes are distinctive in their gray-values to the background. Also, the color variance is used since the text strokes are distinctive in their gray-values to the background, and this value is more sensitive than the gray-level variations. The text level stroke features are extracted using a multi-resolution wavelet transforms on the local image areas and the feature vectors are input to a SVM(Support Vector Machine) classifier for the verification. We have tested the proposed method using various kinds of the natural images and have confirmed that the extraction rates are very high even in complex background images.

Feature Term Based Retrieval Method for Image Retrieval (이미지 검색을 위한 특징용어 기반 검색 기법)

  • Park, Sung-Hee;Hur, Jeung;Kim, Hyun-Jin;Jang, Myung-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.576-578
    • /
    • 2003
  • 본 논문에서는 이미지 검색을 위한 새로운 검색 기법을 제시한다. 기존의 특징기반 검색 기법이나 주석기반 검색 기법은 특징이나 주석에 대하여 색인 형태나 질의 형태가 동일하였다. 그러나, 제안하는 검색 기법은 위의 두 전형적인 검색기법을 혼합한 것으로, 텍스트로 질의하면 질의 텍스트를 질의처리를 통해 텍스트에 포함된 특징용어를 추출하고 특징용어를 이미지가 본질적으로 가지는 특징(color, shape, texture)으로 변환한 다음 그 특징을 질의로 이용하여 특징기반 검색을 하는 기법이다. 이러한 기법은 현재 사용자에게 친숙한 텍스트 질의를 유지할 수 있게 해 주며 앞으로 음성인식을 통한 음성 질의인터페이스가 적용될 경우 더욱 효과적으로 사용될 수 있을 것이다.

  • PDF

Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1167-1174
    • /
    • 2006
  • Text region detection from a natural scene is useful in many applications such as vehicle license plate recognition. Therefore, in this paper, we propose a text region extraction method using pattern histogram of character-edge maps. We create 16 kinds of edge maps from the extracted edges and then, we create the 8 kinds of edge maps which compound 16 kinds of edge maps, and have a character feature. We extract a candidate of text regions using the 8 kinds of character-edge maps. The verification about candidate of text region used pattern histogram of character-edge maps and structural features of text region. Experimental results show that the proposed method extracts a text regions composed of complex background, various font sizes and font colors effectively.

  • PDF

The Effectiveness of High-level Text Features in SOM-based Web Image Clustering (SOM 기반 웹 이미지 분류에서 고수준 텍스트 특징들의 효과)

  • Cho Soo-Sun
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.121-126
    • /
    • 2006
  • In this paper, we propose an approach to increase the power of clustering Web images by using high-level semantic features from text information relevant to Web images as well as low-level visual features of image itself. These high-level text features can be obtained from image URLs and file names, page titles, hyperlinks, and surrounding text. As a clustering engine, self-organizing map (SOM) proposed by Kohonen is used. In the SOM-based clustering using high-level text features and low-level visual features, the 200 images from 10 categories are divided in some suitable clusters effectively. For the evaluation of clustering powers, we propose simple but novel measures indicating the degrees of scattering images from the same category, and degrees of accumulation of the same category images. From the experiment results, we find that the high-level text features are more useful in SOM-based Web image clustering.

Text Region Detection using Feature of Adaptive Character-Edge Map in Natural Images (자연영상에서 적응적 문자-에지 맵 특징을 이용한 텍스트 영역 검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.181-184
    • /
    • 2007
  • 자연영상에 포함된 텍스트는 많은 중요한 정보를 포함하고 있으므로 자연영상에서 텍스트 정보를 검출하는 연구가 활발히 진행되고 있다. 본 논문에서는 문자 영역의 구조적인 특정을 배열문법으로 정의한 적응적 문자-에지 맵을 제안하여 텍스트 영역을 검출한다. 캐니-에지 검출기로 에지를 추출하고, 생성된 에지 이미지를 레이블링하고 그 영역의 문자구조 특징을 분석하기 위해서 적응적 문자-에지 맵을 분석한다. 적응적 문자-에지 랩의 분포 상태를 분석함으로서 텍스트 후보 영역을 검출하고, 텍스트 영역의 에지 히스토그램 프로파일을 분석함으로서 텍스트 후보 영역에 대한 검증을 수행하여 최종적인 텍스트 영역을 검출한다. 제안한 방법은 다양한 종류의 자연영상을 대상으로 실험하였고, 기울어진 텍스트와 다양한 크기의 텍스트 구성된 자연영상에서 텍스트 영역을 효과적으로 검출하였다.

  • PDF

Text Region Detection Using Connected Component Feature in Mobile Phone Images (모바일폰 영상에서 연결요소 특징을 이용한 텍스트 영역 검출)

  • Gwon, Gyo-Hyeon;Park, Jong-Cheon;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.716-718
    • /
    • 2012
  • 본 논문에서는 모바일 폰으로 획득한 영상의 텍스트영역 검출을 제안한다. 최근 모바일 폰을 이용한 영상기반 응용 분야의 연구가 활발히 진행되고 있으며, 특히 영상에서 텍스트를 인식하기 위한 전단계로 텍스트 영역 검출은 중요하다. 본 논문은 텍스트 영역 검출을 위해 먼저, 컬러 영상을 입력 받아 그레이 이미지로 변환하여 영상내에 내포된 잡음을 제거하고 열림/닫힘 연산의 특징을 이용해 각 연결요소를 검출하고 검출된 요소들을 레이블링 한다. 레이블링 된 영상은 텍스트가 갖는 특정 조건에 의해 텍스트 영역인지 텍스트 영역이 아닌지를 검출하고 검출된 텍스트 영역은 검증을 통해 최종 텍스트 영역을 검출한다. 제안한 방법은 기존의 택스트 영역 겁출보다 정확도가 향상할 수 있다.

  • PDF

Text Region Detection using Edge and Local Minima/Maxima Transformation From Natural Scene Images (에지 및 국부 최소/최대 변환을 이용한 자연이미지로부터 텍스트 영역검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.257-259
    • /
    • 2008
  • 자연이미지에 내포된 텍스트는 많은 정보를 제공함으로 이를 효과적으로 검출하여 다양한 응용분야에 활용될 수 있다. 본 논문에서는 텍스트 영역의 에지 특징과 국부 최소/최대 변환을 이용하여 자연이미지로부터 텍스트 영역 검출 방법을 제안한다. 에지 검출은 캐니-에지 검출기로 추출하고, 국부 최소/최대 변환을 이용하여 텍스트 영역의 연결성분을 추출한다. 각각 추출된 에지 및 연결성분으로부터 텍스트 영역 후보를 검출하고, 각각의 결과를 결합하여 최종적인 텍스트 후보 영역을 검출하고, 후보 텍스트 영역에 대한 검증을 수행함으로서 최종적인 텍스트 영역을 검출한다. 제안한 방법은 다양한 종류의 자연이미지를 대상으로 실험한 결과, 에지 및 연결성분의 두 가지 특징을 결합함으로서 자연이미지에 존재하는 다양한 형태의 텍스트 영역을 효과적으로 검출하였다.

  • PDF

Scene Text Detection Using Color-Based Binarization and Text Region Verification Using Support Vector Machine (색기반 이진화를 이용한 장면 텍스트 추출과 써포트 벡터머신을 이용한 텍스트 영역 검증)

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.161-163
    • /
    • 2007
  • 기존의 텍스트 추출을 위한 이진화 방법은 입력 이미지를 명도 이미지로 변환한 뒤 이진화 하는 방법을 사용하였다. 이러한 방법은 칼라 이미지에서는 극명히 구분되는 색이라 할지라도 명도 이미지로 변환하는 과정에서 같은 밝기를 같게 되는 경우(예를 들어, 배경은 붉은색, 텍스트는 초록색), 텍스트를 추출하는 데 어려움이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 입력 이미지를 R, G, B로 분리하고 각각을 이진화 하여 텍스트를 추출하고 다해상도 웨이블릿(Wavelet) 변환을 이용하여 텍스트의 획 특징을 추출하여 추출된 특징들을 SVM(Support Vector Machine) 분류기로 검증하여 최종 텍스트 영역을 확정한다. 제안한 방법을 적용함으로써 명도 정보만으로는 추출하기 어려웠던 텍스트 영역을 효과적으로 추출하고 텍스트와 구별하기 어려운 영역을 획수준으로 검증할 수 있었다.

  • PDF