• Title/Summary/Keyword: 텍스트 연구

Search Result 3,492, Processing Time 0.031 seconds

L2 Reading Difficulties Faced by Malaysian Students in a Korean University (말레이시아 학생들의 L2 읽기 문제: 한국 대학의 사례를 중심으로)

  • Kim, Kyung-Rahn
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.21-32
    • /
    • 2021
  • The current study investigates how Malaysian ESL learners' L2 (English) speaking fluency is reflected in advanced L2 reading and what difficulties they encounter in reading comprehension. Nine Malaysian students attending a Korean university participated in qualitative research using in-depth and semi-structured interviews. The data revealed that L2 was a very familiar language, and their speaking fluency in L2 reduced the anxiety of L2 reading in general. However, it did not play a significant role in reading at an advanced level. Their difficulties in reading were mainly due to a lack of vocabulary knowledge. However, insufficient background knowledge and interest also frustrated their reading tasks. These factors lowered their reading comprehension, causing inaccurate interpretations or discouraging their endeavors to find messages from the given text. Thus, these findings should be carefully addressed in reading classes for Korean L2 learners as well as international students.

Impact of Self-Presentation Text of Airbnb Hosts on Listing Performance by Facility Type (Airbnb 숙소 유형에 따른 호스트의 자기소개 텍스트가 공유성과에 미치는 영향)

  • Sim, Ji Hwan;Kim, So Young;Chung, Yeojin
    • Knowledge Management Research
    • /
    • v.21 no.4
    • /
    • pp.157-173
    • /
    • 2020
  • In accommodation sharing economy, customers take a risk of uncertainty about product quality, which is an important factor affecting users' satisfaction. This risk can be lowered by the information disclosed by the facility provider. Self-presentation of the hosts can make a positive effect on listing performance by eliminating psychological distance through emotional interaction with users. This paper analyzed the self-presentation text provided by Airbnb hosts and found key aspects in the text. In order to extract the aspects from the text, host descriptions were separated into sentences and applied the Attention-Based Aspect Extraction method, an unsupervised neural attention model. Then, we investigated the relationship between aspects in the host description and the listing performance via linear regression models. In order to compare their impact between the three facility types(Entire home/apt, Private rooms, and Shared rooms), the interaction effects between the facility types and the aspect summaries were included in the model. We found that specific aspects had positive effects on the performance for each facility type, and provided implication on the marketing strategy to maximize the performance of the shared economy.

Using Text Mining and Social Network Analysis to Identify Determinant Characteristics Affecting Consumers' Evaluation of Clothing Fit (텍스트 마이닝과 소셜 네트워크 분석 기법을 활용한 소비자의 의복 맞음새(Fit)평가에 영향을 미치는 특성)

  • Soo Hyun Hwang;Juyeon Park
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.101-114
    • /
    • 2023
  • This research aimed to recognize the determinant characteristics affecting consumers' clothing fit evaluation by employing text mining and social network analysis. For this aim, we first extracted text data linked to clothing fit from 2,000 consumer reviews collected from social network services and conducted semantic network examination and CONCOR analysis. As a result, we reported that "pants" and "skirts" were the most commonly associated clothing items with consumers' clothing fit evaluation. And the length of clothing was most commonly investigated. Then, the "waist" and "hip" were the most critical body parts affecting consumers' perception of clothing fit. Further, the four keywords including "wide," "large," "short," and "long" were the most employed ones in consumer reviews when evaluating clothing fit. This study is meaningful in that it specifically recognized the structural relationship and semantic meanings of keywords relevant to consumers' evaluation of clothing fit, which could bring empirical reference information for advanced clothing fit.

A Study on the Preference and Efficiency of Block-Base Programming and Text-based Programming (블록 기반 프로그래밍과 텍스트 기반 프로그래밍의 선호도와 효율에 관한 연구)

  • Jeon, Hyun-mo;Kim, Eui-Jeong;Chung, Jong-In;Kim, Chang Suk;Kang, Shin-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.486-489
    • /
    • 2021
  • The purpose of this study was to investigate whether block-based programming language, which is currently being used in elementary and secondary schools, attracts students' interest and motivates them to learn. In addition, this study was to investigate how block-based programming language can help students improve their computing thinking ability and have a good effect on learning text-based programming to learn in high school. In addition, this study tried to study the direction of education linked with artificial intelligence and programming, which are popular in the era of the Fourth Industrial Revolution. The interest in software education has increased so much that software and information education from elementary school to high school has achieved quantitative and qualitative growth that can not be compared with before. However, in the field of artificial intelligence, discussions have begun, but we can not say that we have yet established ourselves in our education. We will discuss how block-based programming and text-based programming will be combined with artificial intelligence and educated.

  • PDF

Named entity normalization for traditional herbal formula mentions

  • Ho Jang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.105-111
    • /
    • 2024
  • In this paper, we propose methods for the named entity normalization of traditional herbal formula found in medical texts. Specifically, we developed methodologies to determine whether mentions, such as full names of herbal formula and their abbreviations, refer to the same concept. Two different approaches were attempted. First, we built a supervised classification model that uses BERT-based contextual vectors and character similarity features of herbal formula mentions in medical texts to determine whether two mentions are identical. Second, we applied a prompt-based querying method using GPT-4o mini and GPT-4o to perform the same task. Both methods achieved over 0.9 in Precision, Recall, and F1-score, with the GPT-4o-based approach demonstrating the highest Precision and F1-Score. The results of this study demonstrate the effectiveness of machine learning-based approaches for named entity normalization in traditional medicine texts, with the GPT-4o-based method showing superior performance. This suggests its potential as a valuable foundation for the development of intelligent information extraction systems in the traditional medicine domain.

A Comparative Study of Text analysis and Network embedding Methods for Effective Fake News Detection (효과적인 가짜 뉴스 탐지를 위한 텍스트 분석과 네트워크 임베딩 방법의 비교 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • Fake news is a form of misinformation that has the advantage of rapid spreading of information on media platforms that users interact with, such as social media. There has been a lot of social problems due to the recent increase in fake news. In this paper, we propose a method to detect such false news. Previous research on fake news detection mainly focused on text analysis. This research focuses on a network where social media news spreads, generates qualities with DeepWalk, a network embedding method, and classifies fake news using logistic regression analysis. We conducted an experiment on fake news detection using 211 news on the Internet and 1.2 million news diffusion network data. The results show that the accuracy of false network detection using network embedding is 10.6% higher than that of text analysis. In addition, fake news detection, which combines text analysis and network embedding, does not show an increase in accuracy over network embedding. The results of this study can be effectively applied to the detection of fake news that organizations spread online.

A Study on the International Research Trends of Dance Management Using Social Network Analysis (국외 무용경영 연구동향에 관한 사회연결망(SNA) 분석)

  • Lee, Ji Young;Kim, Ji Young
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.259-260
    • /
    • 2019
  • 이 연구는 텍스트마이닝 및 사회연결망 분석을 통하여 지금까지 축적된 연구주제의 핵심어와 네트워크 지식구조를 확인하여 무용경영 연구의 흐름과 동향을 분석하는데 목적이 있다. 무용경영 연구동향에 관한 텍스트마이닝 분석 결과, 전반적으로 무용경영 연구에서 가장 높은 빈도를 나타낸 특정 토픽으로는 'Performing arts', 'Entrepreneurship', 'Dance', 'Audience development', 'Dance management' 등이 도출되었다. 사회연결망 분석을 실시한 결과, 'Entrepreneurship', 'Dance Marketing', 'Marketing'에서 노드간의 연결성이 높은 것으로 나타났다. 또한 국외에서는 꾸준히 관객개발(audience development)과 공연마케팅(performing arts marketing)이 주요 쟁점으로 다루어져 왔다. 이와 같은 연구동향 및 지식구조 분석을 토대로 이 연구는 보다 확장된 무용경영 연구의 관점을 제안하였다.

  • PDF

Topic and Sentiment Analysis on COVID19 Research in Korea Using Text Analysis (텍스트 분석을 이용한 코로나19 관련 국내논문의 토픽 및 감성연구)

  • Heo, Seong-Min;Yang, Ji-Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.329-331
    • /
    • 2021
  • 본 연구에서는 코로나19 관련 연구논문의 연구주제를 탐색하고 동향을 검토하고 있다. 또한 감성분석을 통해 부정적인 어조가 강한 경고가 되는 주제들을 알아본다. 잠재 디리슐레 할당(LDA)를 이용하여 총 8개의 토픽을 발견하 였고, 이를 구조적 토픽 모델링(STM)과 비교하여 비교적 안정적인 결과임을 확인하였다. 또한 k-means 군집 알고리즘을 통해 각 토픽별로 세부 연구주제를 발견하였고 주성분 분석을 이용하여 이를 시각적으로 표현하였다. 감성분석을 통해 각 토픽별 긍정적, 부정적인 단어들을 살펴보고 감성점수를 계산하여 연구논문의 주된 어조를 파악하였는데, 특히 생물 의학 관련, 국제적 역학관계, 심리적 영향과 관련된 연구에서 부정적인 어조가 강한 것으로 나타나 해당 부문에 대해서 주의와 관심이 요구된다. 향후 연구자들이 연구의 방향성을 탐색하고 정책결정자들이 연구지원 사업을 결정하는데 기초자료로 활용될 수 있을 것이다.

  • PDF

보안성 및 사용성 측면에서의 CAPTCHA 동향

  • Cho, Geumhwan;Choi, Jusop;Kim, Hyoungshick
    • Review of KIISC
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • 웹 사이트에서 자동화 공격 도구를 이용한 다양한 종류의 공격을 방지하기 위한 보안 솔루션으로 CAPTCHA가 널리 이용되고 있다. 그러나 동시에 CAPTCHA를 해결하는 자동화 도구에 대한 연구가 진행되면서 CAPTCHA에 사용되는 텍스트 이미지(예: 숫자, 글자)를 더욱 어렵게 만들게 되었다. 그 결과 사용자도 CAPTCHA를 해결하는데 어려움을 겪게 되었고, 결론적으로 보안성을 높이기 위해 사용성을 감소시킨 결과를 초래 하였다. 본 논문에서는 텍스트, 오디오 및 이미지 기반 CAPTCHA로 분류하여 보안성과 사용성 측면에서 분석하고자 한다.

A Text-Based SMI Editor with Real-Time Execution (실시간 실행 기능을 포함한 텍스트기반 SMIL 문서편집기)

  • 김정훈;김은혜;채진석
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.445-448
    • /
    • 2000
  • XML은 HTML 의 단순성과 SGML의 복잡성을 동시에 극복하기 위한 노력으로 시작되어 인터넷 문서표현과 관련된 여러 분야에서 활발하게 연구되고 있다. SMIL은 멀티미디어 데이터를 XML 기반으로 표현하는 언어로서, 아직은 웹 브라우저 차원에서 지원해주는 브라우저가 많지 않지만, 다양한 멀티미디어 데이터를 동기화 시켜 표현하는 SMIL 의기능으로 볼 때 멀티미디어 데이터의 표현과 전송에 사용되는 중요한 표준으로 자리잡을 것으로 예상된다. 이 논문에서는 이러한 SMIL를 사용하여 멀티미디어 데이터를 편집할 때, 구축된 SMIl 문서의 실행결과를 미리 확인하고 이를 다시 SMIl 문서 편집에 적용할수 있도록 , 실시간 실행 기능이 포함된 텍스트 기반 SMIL 문서편집기를 설계 및 구현하였다.

  • PDF