• 제목/요약/키워드: 텍스트 연구

Search Result 3,494, Processing Time 0.238 seconds

A Study on Platform Development for User Participatory Visualization and Recommendation Curation based on Integrated Mining of Book Details and Body Texts (도서 정보·본문텍스트 통합 마이닝 기반 사용자 참여형 시각화 및 추천 큐레이션 플랫폼 개발에 관한 연구)

  • Hong, Min-Ha;Choi, Gun-Hee;Park, Kyoung-Hoon;Jung, Kwang-Chul;Kim, Seung-Hoon
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.14-17
    • /
    • 2015
  • 오늘날 인터넷의 발달과 전자 책(e-Book) 시장규모가 커짐에 따라 온라인을 통한 도서 정보 제공이 증가하고 있다. 하지만 현재 도서 정보나 도서 추천을 제공하는 온라인 사이트들은 기본 서지 정보만을 위주로 제공하고 있어 도서 본문을 활용한 정보 제공 및 추천 시스템의 필요성이 증가하고 있다. 따라서 본 논문에서는 도서 본문을 활용한 정보 제공 및 개인 맞춤형 추천을 위해 '도서 정보 본문텍스트 통합 마이닝 기반 사용자 참여형 시각화 및 추천 큐레이션 플랫폼'을 제안하고, 이를 구축하였다. 제안한 서비스 플랫폼은 독자에게 다양한 방법으로 도서 정보를 제공하며, 독자는 적은 시간으로 많은 정보를 얻을 수 있도록 하여 사용자의 도서 선택의 폭을 넓혀줄 것이다.

Sentence generation on sequential multi-modal data using random hypergraph model (랜덤 하이퍼그래프 모델을 이용한 순차적 멀티모달 데이터에서의 문장 생성)

  • Yoon, Woong-Chang;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.376-379
    • /
    • 2010
  • 인간의 학습과 기억현상에 있어서 멀티모달 데이터를 사용하는 것은 단순 모달리티 데이터를 사용하는 것에 비해서 향상된 효과를 보인다는 여러 연구 결과가 있어왔다. 이 논문에서는 인간의 순차적인 정보처리와 생성현상을 기계에서의 시뮬레이션을 통해서 기계학습에 있어서도 동일한 현상이 나타나는지에 대해서 알아보고자 하였다. 이를 위해서 가중치를 가진 랜덤 하이퍼그래프 모델을 통해서 순차적인 멀티모달 데이터의 상호작용을 하이퍼에지들의 조합으로 나타내는 것을 제안 하였다. 이러한 제안의 타당성을 알아보기 위해서 비디오 데이터를 이용한 문장생성을 시도하여 보았다. 이전 장면의 사진과 문장을 주고 다음 문장의 생성을 시도하였으며, 단순 암기학습이나 주어진 룰을 통하지 않고 의미 있는 실험 결과를 얻을 수 있었다. 단순 텍스트와 텍스트-이미지 쌍의 단서를 통한 실험을 통해서 멀티 모달리티가 단순 모달리티에 비해서 미치는 영향을 보였으며, 한 단계 이전의 멀티모달 단서와 두 단계 및 한 단계 이전의 멀티모달 단서를 통한 실험을 통해서 순차적 데이터의 단계별 단서의 차이에 따른 영향을 알아볼 수 있었다. 이를 통하여 멀티 모달리티가 시공간적으로 미치는 기계학습에 미치는 영향과 순차적 데이터의 시간적 누적에 따른 효과가 어떻게 나타날 수 있는지에 대한 실마리를 제공할 수 있었다고 생각된다.

  • PDF

Recognizing hanbok in youth through text mining (텍스트 마이닝을 통해 살펴본 청소년의 한복 인식)

  • Shim, Joonyoung
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.3
    • /
    • pp.239-250
    • /
    • 2019
  • Recently, young people wearing hanbok are highly visible in the palace and in Hanok Village. However, there is much controversy regarding whether the hanbok the young people are wearing is traditional. Young people in Korea are exposed to hanbok through a variety of ways such as school education, games, webtoons, television shows, and movies. In this study, we presented teenagers with illustrations of hanbok to see which they preferred and which if any they recognized as traditional. The study respondents most preferred the hanbok from the 18th century, but they considered the hanbok from the 20th century to be the traditional style. We next used text mining to analyze the students' freely written, open-ended responses regarding the hanbok they preferred and the one they considered traditional. The hanbok from the 18th century, the one the teenagers preferred, was a sexy, cool style related to gisaeng that emphasized the waist, whereas the hanbok they believed was traditional, the $20^{th}$-century hanbok, was simple, neat, comfortable, and plain. Among the young people's responses regarding which hanbok was traditional, the text mining extracted the following repeated words related to both the 18th- and 20th-century hanbok: "dramas," "mass media," "historical dramas," and "movies." For the 18th-century hanbok only, we extracted "webtoons" and "Hanok Village," and for only the 20th-century hanbok, we extracted "textbooks."

Keywords and Topic Analysis of Social Issues on Twitter Based on Text Mining and Topic Modeling (텍스트 마이닝과 토픽 모델링을 기반으로 한 트위터에 나타난 사회적 이슈의 키워드 및 주제 분석)

  • Kwak, Soo Jeong;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • In this study, we investigate important keywords and their relationships among the keywords for social issues, and analyze topics to find subjects of the social issues. In particular, we collected twitter data with the keyword 'metoo' which has attracted much attention in these days, and perform keyword analysis and topic modeling. First, we preprocess the twitter data, identified important keywords, and analyzed the relatedness of the keywords. After then, topic modeling is performed to find subjects related to 'metoo'. Our experimental results showed that relatedness of keywords and subjects on social issues in twitter are well identified based on keyword analysis and topic modeling.

A Comparative Study on Korean Reading Comprehension by Adjusting Vocabulary Levels (수준별 어휘 조정에 따른 한국어 읽기 텍스트 이해도 비교 연구)

  • Ju, Jae-hwan
    • Journal of Korean language education
    • /
    • v.29 no.4
    • /
    • pp.201-223
    • /
    • 2018
  • The purpose of this study is to observe the effects of text modification by comparing differences in Korean reading comprehension levels that arise from differences in vocabulary levels in texts. This study intends to use simplified texts with the vocabulary difficulty adjusted differently from the original text to measure reading comprehension levels of Korean learners and analyze the result. To measure reading comprehension, the researcher divided 55 Korean learners of intermediate to advanced level of fluency into two groups; the control group read the original text and the treatment group read a simplified text in which complex vocabulary were substituted with easier words of medium difficulty. Then the two groups were tested with the same questionnaire to measure comprehension levels of each group. The result showed that the groups that read simplified texts scored higher than the control group; this suggests that the reading comprehension level was increased in the treatment group. The experiment confirmed that unknown vocabulary density has direct impact on Korean reading comprehension. The result shows that the proportion of unknown vocabulary should be reduced for meaning-focused reading. It also demonstrates that comprehension of the learner was enhanced with lexical simplification rather than structural simplification i.e. simplification of grammar or sentences. Thus, diverse reading materials adjusted to the learners' level of fluency should be developed to enable reading for learning Korean. By reducing the burden of understanding the meaning of each vocabulary, learners will be able to achieve the initial goal of reading.

Keyword trends analysis related to the aviation industry during the Covid-19 period using text mining (텍스트마이닝을 활용한 Covid-19 기간 동안의 항공산업 관련 키워드 트렌드 분석)

  • Choi, Donghyun;Song, Bomi;Park, Dahyeon;Lee, Sungwoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • The purpose of this study is to conduct keyword trend analysis using articles data on the impact of Covid-19 in the aviation in dustry. In this study, related articles were extracted centering on the keyword "Airline" by dividing the period of 6months before and after Covid-19 occurrence. After that, Topic modeling(LDA) was performed. Through this, The main topic was extracted in the event of an epidemic such as Covid-19, It is expected to be used as primary data to predict the aviation industry's impact when occurrence like Covid-19.

Psalm Text Generator Comparison Between English and Korean Using LSTM Blocks in a Recurrent Neural Network (순환 신경망에서 LSTM 블록을 사용한 영어와 한국어의 시편 생성기 비교)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.269-271
    • /
    • 2022
  • In recent years, RNN networks with LSTM blocks have been used extensively in machine learning tasks that process sequential data. These networks have proven to be particularly good at sequential language processing tasks by being more able to accurately predict the next most likely word in a given sequence than traditional neural networks. This study trained an RNN / LSTM neural network on three different translations of 150 biblical Psalms - in both English and Korean. The resulting model is then fed an input word and a length number from which it automatically generates a new Psalm of the desired length based on the patterns it recognized while training. The results of training the network on both English text and Korean text are compared and discussed.

  • PDF

Product Planning using Sentiment Analysis Technique Based on CNN-LSTM Model (CNN-LSTM 모델 기반의 감성분석을 이용한 상품기획 모델)

  • Kim, Do-Yeon;Jung, Jin-Young;Park, Won-Cheol;Park, Koo-Rack
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.427-428
    • /
    • 2021
  • 정보통신기술의 발달로 전자상거래의 증가와 소비자들의 제품에 대한 경험과 지식의 공유가 활발하게 진행됨에 따라 소비자는 제품을 구매하기 위한 자료수집, 활용을 진행하고 있다. 따라서 기업은 다양한 기능들을 반영한 제품이 치열하게 경쟁하고 있는 현 시장에서 우위를 점하고자 소비자 리뷰를 분석하여 소비자의 정확한 소비자의 요구사항을 분석하여 제품기획 프로세스에 반영하고자 텍스트마이닝(Text Mining) 기술과 딥러닝(Deep Learning) 기술을 통한 연구가 이루어지고 있다. 본 논문의 기초자료가 되는 데이터셋은 포털사이트의 구매사이트와 오픈마켓 사이트의 소비자 리뷰를 웹크롤링하고 자연어처리하여 진행한다. 감성분석은 딥러닝기술 중 CNN(Convolutional Neural Network), LSTM(Long Short Term Memory) 조합의 모델을 구현한다. 이는 딥러닝을 이용한 제품기획 프로세스로 소비자 요구사항 반영, 경제적인 측면, 제품기획 시간단축 등 긍정적인 영향을 미칠 것으로 기대한다.

  • PDF

Analysis of Vocabulary Relations by Dimensional Reduction for Word Vectors Visualization (차원감소 단어벡터 시각화를 통한 어휘별 관계 분석)

  • Ko, Kwang-Ho;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.13-16
    • /
    • 2022
  • LSTM과 같은 딥러닝 기법을 이용해 언어모델을 얻는 과정에서 일종의 부산물로 학습 대상인 말뭉치를 구성하는 어휘의 단어벡터를 얻을 수 있다. 단어벡터의 차원을 2차원으로 감소시킨 후 이를 평면에 도시하면 대상 문장/문서의 핵심 어휘 사이의 상대적인 거리와 각도 등을 직관적으로 확인할 수 있다. 본 연구에서는 기형도의 시(詩)을 중심으로 특정 작품을 선정한 후 시를 구성하는 핵심 어휘들의 차원 감소된 단어벡터를 2D 평면에 도시하여, 단어벡터를 얻기 위한 텍스트 전처리 방식에 따라 그 거리/각도가 달라지는 양상을 분석해 보았다. 어휘 사이의 거리에 의해 군집/분류의 결과가 달라질 수 있고, 각도에 의해 유사도/유추 연산의 결과가 달라질 수 있으므로, 평면상에서 핵심 어휘들의 상대적인 거리/각도의 직관적 확인을 통해 군집/분류작업과 유사도 추천/유추 등의 작업 결과의 양상 변화를 확인할 수 있었다. 이상의 결과를 통해, 영화 추천/리뷰나 문학작품과 같이 단어 하나하나의 배치에 따라 그 분위기와 정동이 달라지는 분야의 경우 텍스트 전처리에 따른 거리/각도 변화를 미리 직관적으로 확인한다면 분류/유사도 추천과 같은 작업을 좀 더 정밀하게 수행할 수 있을 것으로 판단된다.

  • PDF

A Study on Identifying Personal Information on Conversational Text Data (대화형 텍스트 데이터 내 개인정보 식별에 대한 연구)

  • Cha, Do Hyun;Kown, Bo Keun;Youn, Hee Chang;Lee, Gu Hyup;Joo, Jong Wha J.
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.11-13
    • /
    • 2022
  • 데이터 3 법을 필두로, 기업은 개인정보가 포함된 데이터를 활용하기 위해 비식별 처리가 필요하게 되었다. 기존 방식은, 비정형 텍스트 데이터에서 정규표현식을 통한 개인정보 식별은 데이터의 다양성에 의해 한계가 명확하며, 기존의 Named Entity Recognition(NER) 태스크로 해결하기에는 언어의 중의적 표현과 2 인 대화에서 나타나는 개인정보가 누구의 것인지 판단하지 못한다는 한계가 존재한다. 따라서 우리는 기존의 한계점을 극복하고 개선하기 위해 BERT 언어 모델에 화자 정보를 학습시키고, 하나의 어절에 2 개의 tag 를 labeling 하는 방법을 제안하여 정확한 개인정보 식별을 시도하였다.