• 제목/요약/키워드: 텍스트 모델 학습

검색결과 339건 처리시간 0.029초

AI 아나운서 : 인공지능 기술을 이용한 정보 전달 소프트웨어 (AI Announcer : Information Transfer Software Using Artificial Intelligence Technology)

  • 김혜원;이영은;이홍창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.937-940
    • /
    • 2020
  • 본 논문은 AI 기술을 기반으로 텍스트 스크립트를 자동으로 인식하고 영상 합성 기술을 응용하여 텍스트 정보를 시각화하는 AI 아나운서 소프트웨어 연구에 대하여 기술한다. 기존의 AI 기반 영상 정보 전달 서비스인 AI 앵커는 텍스트를 인식하여 영상을 합성하는데 오랜 시간이 필요하였으며, 특정 인물 이미지로만 영상 합성이 가능했기 때문에 그 용도가 제한적이었다. 본 연구에서 제안하는 방법은 Tacotron 으로 새로운 음성을 학습 및 합성하여, LRW 데이터셋으로 학습된 모델을 사용하여 자연스러운 영상 합성 체계를 구축한다. 단순한 얼굴 이미지의 합성을 개선하고 다채로운 이미지 제작을 위한 과정을 간략화하여 다양한 비대면 영상 정보 제공 환경을 구성할 수 있을 것으로 기대된다.

암시적 비윤리 데이터를 활용한 언어 모델의 강건성 평가 (Evaluation of Language Model Robustness Using Implicit Unethical Data)

  • 김유진;정가연;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.633-637
    • /
    • 2023
  • 암시적 비윤리 표현은 명시적 비윤리 표현과 달리 학습 데이터 선별이 어려울 뿐만 아니라 추가 생산 패턴 예측이 까다롭다. 고로 암시적 비윤리 표현에 대한 언어 모델의 감지 능력을 기르기 위해서는 모델의 취약성을 발견하는 연구가 반드시 선행되어야 한다. 본 논문에서는 암시적 비윤리 표현에 대한 표기 변경과 긍정 요소 삽입이라는 두 가지 변형을 통해 모델의 예측 변화를 유도하였다. 그 결과 모델이 야민정음과 외계어를 사용한 언어 변형에 취약하다는 사실을 발견하였다. 이에 더해 이모티콘이 텍스트와 함께 사용되는 경우 텍스트 자체보다 이모티콘의 효과가 더 크다는 사실을 밝혀내었다.

  • PDF

KE-T5: 한국어-영어 대용량 텍스트를 활용한 이중언어 사전학습기반 대형 언어모델 구축 (Construction of bilingually pre-trained language model from large-scaled Korean and English corpus)

  • 신사임;김산;서현태
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.419-422
    • /
    • 2021
  • 본 논문은 한국어와 영어 코퍼스 93GB를 활용하여 구축한 대형 사전학습기반 언어모델인 KE-T5를 소개한다. KE-T5는 한국어와 영어 어휘 64,000개를 포함하는 대규모의 언어모델로 다양한 한국어처리와 한국어와 영어를 모두 포함하는 번역 등의 복합언어 태스크에서도 높은 성능을 기대할 수 있다. KE-T5의 활용은 대규모의 언어모델을 기반으로 영어 수준의 복잡한 언어처리 태스크에 대한 연구들을 본격적으로 시작할 수 있는 기반을 마련하였다.

  • PDF

비디오 질의 응답 시스템을 위한 전이 학습 기반의 멀티 모달 퓨전 정답 선택 모델 (Transfer Learning-based Multi-Modal Fusion Answer Selection Model for Video Question Answering System)

  • 박규민;박성배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.548-553
    • /
    • 2021
  • 비디오 질의 응답은 입력으로 주어진 비디오와 질문에 적절할 정답을 제공하기 위해 텍스트, 이미지 등 다양한 정보처리가 요구되는 대표적인 multi-modal 문제이다. 질의 응답 시스템은 질의 응답의 성능을 높이기 위해 다수의 서로 다른 응답 모듈을 사용하기도 하며 생성된 정답 후보군 중 가장 적절할 정답을 선택하는 정답 선택 모듈이 필요하다. 정답 선택 모듈은 응답 모듈의 서로 다른 관점을 고려하여 응답 선택을 선택할 필요성이 있다. 하지만 응답 모듈이 black-box 모델인 경우 정답 선택 모듈은 응답 모듈의 parameter와 예측 분포를 통해 지식을 전달 받기 어렵다. 그리고 학습 데이터셋은 응답 모듈이 학습에 사용했기 때문에 과적합 문제로 각 모듈의 관점을 학습하기엔 어려우며 학습 데이터셋 이외 비교적 적은 데이터셋으로 학습해야 하는 문제점이 있다. 본 논문에서는 정답 선택 성능을 높이기 위해 전이 학습 기반의 멀티모달 퓨전 정답 선택 모델을 제안한다. DramaQA 데이터셋을 통해 성능을 측정하여 제안된 모델의 우수성을 실험적으로 증명하였다.

  • PDF

생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법 (A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering)

  • 정영상;지승현;권다롱새
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권11호
    • /
    • pp.481-492
    • /
    • 2023
  • 본 연구는 생성형 대규모 언어 모델을 활용하여 텍스트에서 정보를 추출하기 위한 한글 데이터셋 구축 방법을 탐구한다. 현대 사회에서는 혼합된 정보가 빠르게 유포되며, 이를 효과적으로 분류하고 추출하는 것은 의사결정 과정에 중요하다. 그러나 이에 대한 학습용 한국어 데이터셋은 아직 부족하다. 이를 극복하기 위해, 본 연구는 생성형 대규모 언어 모델을 사용하여 텍스트 기반 제로샷 학습(zero-shot learning)을 이용한 정보 추출을 시도하며, 이를 통해 목적에 맞는 한국어 데이터셋을 구축한다. 본 연구에서는 시스템-지침-소스입력-출력형식의 프롬프트 엔지니어링을 통해 언어 모델이 원하는 결과를 출력하도록 지시하며, 입력 문장을 통해 언어 모델의 In-Context Learning 특성을 활용하여 데이터셋을 구축한다. 생성된 데이터셋을 기존 데이터셋과 비교하여 본 연구 방법론을 검증하며, 관계 정보 추출 작업의 경우 KLUE-RoBERTa-large 모델 대비 25.47% 더 높은 성능을 달성했다. 이 연구 결과는 한국어 텍스트에서 지식 요소를 추출하는 가능성을 제시함으로써 인공지능 연구에 도움을 줄 것으로 기대된다. 더욱이, 이 방법론은 다양한 분야나 목적에 맞게 활용될 수 있어, 다양한 한국어 데이터셋 구축에 잠재력을 가진다고 볼 수 있다.

지식증류를 활용한 지속적 한국어 개체명 인식 (Continuous Korean Named Entity Recognition Using Knowledge Distillation)

  • 장준서;박성식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.505-509
    • /
    • 2023
  • 개체명 인식은 주어진 텍스트에서 특정 유형의 개체들을 식별하고 추출하는 작업이다. 일반적인 딥러닝 기반 개체명 인식은 사전에 개체명들을 모두 정의한 뒤 모델을 학습한다. 하지만 실제 학습 환경에서는 지속적으로 새로운 개체명이 등장할 수 있을뿐더러 기존 개체명을 학습한 데이터가 접근이 불가할 수 있다. 또한, 새로 모델을 학습하기 위해 새로운 데이터에 기존 개체명을 수동 태깅하기엔 많은 시간과 비용이 든다. 해결 방안으로 여러 방법론이 제시되었지만 새로운 개체명을 학습하는 과정에서 기존 개체명 지식에 대한 망각 현상이 나타났다. 본 논문에서는 지식증류를 활용한 지속학습이 한국어 개체명 인식에서 기존 지식에 대한 망각을 줄이고 새로운 지식을 학습하는데 효과적임을 보인다. 국립국어원에서 제공한 개체명 인식 데이터로 실험과 평가를 진행하여 성능의 우수성을 보인다.

  • PDF

토픽모델의 성능 향상을 위한 불용어 자동 생성 기법 (Automatic Generating Stopword Methods for Improving Topic Model)

  • 이정빈;인호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.869-872
    • /
    • 2017
  • 정보검색(Information retrieval) 및 텍스트 분석을 위해 수집하는 비정형 데이터 즉, 자연어를 전처리하는 과정 중 하나인 불용어(Stopword) 제거는 모델의 품질을 높일 수 있는 쉽고, 효과적인 방법 중에 하나이다. 특히 다양한 텍스트 문서에 잠재된 주제를 추출하는 기법인 토픽모델링의 경우, 너무 오래되거나, 수집된 문서의 도메인이나 성격과 무관한 불용어의 제거로 인해, 해당 토픽 모델에서 학습되어 생성된 주제 관련 단어들의 일관성이 떨어지게 된다. 따라서 분석가가 분류된 주제를 올바르게 해석하는데 있어 많은 어려움이 따르게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해 일반적으로 사용되는 표준 불용어 대신 관련 도메인 문서로부터 추출되는 점별 상호정보량(PMI: Pointwise Mutual Information)을 이용하여 불용어를 자동으로 생성해주는 기법을 제안한다. 생성된 불용어와 표준 불용어를 통해 토픽 모델의 품질을 혼잡도(Perplexity)로써 측정한 결과, 본 논문에서 제안한 기법으로 생성한 30개의 불용어가 421개의 표준 불용어보다 더 높은 모델 성능을 보였다.

사전학습 된 언어 모델 기반의 양방향 게이트 순환 유닛 모델과 조건부 랜덤 필드 모델을 이용한 참고문헌 메타데이터 인식 연구 (A Study on Recognition of Citation Metadata using Bidirectional GRU-CRF Model based on Pre-trained Language Model)

  • 지선영;최성필
    • 정보관리학회지
    • /
    • 제38권1호
    • /
    • pp.221-242
    • /
    • 2021
  • 본 연구에서는 사전학습 된 언어 모델을 기반으로 양방향 게이트 순환 유닛 모델과 조건부 랜덤 필드 모델을 활용하여 참고문헌을 구성하는 메타데이터를 자동으로 인식하기 위한 연구를 진행하였다. 실험 집단은 2018년에 발행된 학술지 40종을 대상으로 수집한 PDF 형식의 학술문헌 53,562건을 규칙 기반으로 분석하여 추출한 참고문헌 161,315개이다. 실험 집합을 구축하기 위하여 PDF 형식의 학술 문헌에서 참고문헌을 분석하여 참고문헌의 메타데이터를 자동으로 추출하는 연구를 함께 진행하였다. 본 연구를 통하여 가장 높은 성능을 나타낸 언어 모델을 파악하였으며 해당 모델을 대상으로 추가 실험을 진행하여 학습 집합의 규모에 따른 인식 성능을 비교하고 마지막으로 메타데이터별 성능을 확인하였다.

점진적으로 계산되는 분류정보와 링크정보를 이용한 하이퍼텍스트 문서 분류 방법 (A Hypertext Categorization Method using Incrementally Computable Class Link Information)

  • 오효정;맹성현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권7호
    • /
    • pp.498-509
    • /
    • 2002
  • 본 논문은 하이퍼텍스트가 갖는 중요한 특성인 링크 정보를 활용한 문서 분류 모델을 제안한다. 제안된 모델의 주안점은 대상 문서와 링크로 연결된 이웃한 문서의 내용 및 범주를 분석하여 대상 문서 벡터를 조정하고, 이를 근거로 대상 문서가 어느 범주에 해당하는지를 결정한다. 또한, 이웃 문서에 포함된 용어를 반영함으로써 대상 문서의 내용을 확장 해석하고, 이웃 문서의 가용 분류 정보가 있는 경우 이를 참조함으로써 정확도 향상을 기한다. 이러한 접근 방법은 일반 웹 환경에 적용할 수 있는데, 특히 하이퍼텍스트를 주제별로 분류하여 관리하는 검색 엔진의 경우 매일 쏟아져 나오는 새로운 문서와 기존 문서간의 링크를 활용함으로써 전체 시스템의 점진적인 분류에 매우 유용하다. 제안된 모델을 검증하기 위하여 Reuter-21578과 계몽사(ETRl-Kyemong) 자료를 대상으로 실험한 결과 최고 18.5%의 성능 향상을 얻었다.

신경망 기반 텍스트 모델링에 있어 순차적 결합 방법의 한계점과 이를 극복하기 위한 담화 기반의 결합 방법 (A Discourse-based Compositional Approach to Overcome Drawbacks of Sequence-based Composition in Text Modeling via Neural Networks)

  • 이강욱;한상규;맹성현
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권12호
    • /
    • pp.698-702
    • /
    • 2017
  • 자연 언어 처리(Natural Language Processing) 분야에 심층 신경망(Deep Neural Network)이 소개된 이후, 단어, 문장 등의 의미를 나타내기 위한 분산 표상인 임베딩(Embedding)을 학습하기 위한 연구가 활발히 진행되고 있다. 임베딩 학습을 위한 방법으로는 크게 문맥 기반의 텍스트 모델링 방법과, 기학습된 임베딩을 결합하여 더 긴 텍스트의 분산 표상을 계산하고자 하는 결합 기반의 텍스트 모델링 방법이 있다. 하지만, 기존 결합 기반의 텍스트 모델링 방법은 최적 결합 단위에 대한 고찰 없이 단어를 이용하여 연구되어 왔다. 본 연구에서는 비교 실험을 통해 문서 임베딩 생성에 적합한 결합 기법과 최적 결합 단위에 대해 알아본다. 또한, 새로운 결합 방법인 담화 분석 기반의 결합 방식을 제안하고 실험을 통해 기존의 순차적 결합 기반 신경망 모델 대비 우수성을 보인다.