• Title/Summary/Keyword: 텍스트 매칭

Search Result 81, Processing Time 0.021 seconds

Implementation of Anti-Porn Spam System based on Hyperlink Analysis Technique's of the Web Robot Agent (웹 로봇 에이전트의 하이퍼링크 분석기법을 이용한 음란메일 차단 시스템의 구현)

  • Lee, Seung-Man;Jung, Hui-Sok;Han, Sang;Song, Woo-Seok;Lee, Do-Han;Hong, Ji-Young;Ban, Eui-Hwan;Yang, Joon-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.332-335
    • /
    • 2007
  • 이메일은 누구나 쉽게 정보를 교환할 수 있는 편리함 때문에 인터넷에서 가장 중요한 수단으로 사용되고 있다. 그러나 순수한 의사소통의 수단이 아닌 스팸메일의 범람은 성인뿐만 아니라, 어린이 청소년에게도 무차별적으로 전송됨으로써 심각한 부작용을 낳고 있다. 본 논문은 점차 지능화 되는 신 유형의 음란 스팸메일로부터 청소년을 보호하기 위하여 새로운 방법의 음란메일 차단시스템을 제안하고자 한다. 기존의 스팸메일 차단시스템은 사용자가 직접 음란한 메일이라고 판단되는 메일에 대해 일일이 키워드를 설정하거나, 메일 내용 중에 텍스트만을 추출하여 패턴 매칭방법으로 분류하는 것이 대부분이었지만, 본 논문은 기존 방법의 문제점을 해결하기 위하여 이미지 내 Skin-Color분포의 Human Detection 알고리즘과 웹 로봇 에이전트의 하이퍼링크 분석기법을 사용하였다. 성능 측정결과, 형태소 분석과 Human Detection 알고리즘을 병합하여 적용한 경우 성능 측정에서 90% 정도의 F-measure를 보였지만, 추가적으로 웹 로봇 에이전트의 하이퍼링크 분석기법을 병합하여 적용한 경우 97% 이상의 F-measure를 보이며, 신뢰성이 높은 음란스팸메일 차단 시스템을 구현할 수 있다는 것을 증명하였다.

  • PDF

A Comparative Analysis of Content-based Music Retrieval Systems (내용기반 음악검색 시스템의 비교 분석)

  • Ro, Jung-Soon
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.3
    • /
    • pp.23-48
    • /
    • 2013
  • This study compared and analyzed 15 CBMR (Content-based Music Retrieval) systems accessible on the web in terms of DB size and type, query type, access point, input and output type, and search functions, with reviewing features of music information and techniques used for transforming or transcribing of music sources, extracting and segmenting melodies, extracting and indexing features of music, and matching algorithms for CBMR systems. Application of text information retrieval techniques such as inverted indexing, N-gram indexing, Boolean search, truncation, keyword and phrase search, normalization, filtering, browsing, exact matching, similarity measure using edit distance, sorting, etc. to enhancing the CBMR; effort for increasing DB size and usability; and problems in extracting melodies, deleting stop notes in queries, and using solfege as pitch information were found as the results of analysis.

A Single-Player Car Driving Game-based English Vocabulary Learning System (1인용 자동차 주행 게임 기반의 영어 단어 학습 시스템)

  • Kim, Sangchul;Park, Hyogeun
    • Journal of Korea Game Society
    • /
    • v.15 no.2
    • /
    • pp.95-104
    • /
    • 2015
  • Many games for English vocabulary learning, such as hangman, cross puzzle, matching, etc, have been developed which are of board-type or computer game-type. Most of these computer games are adapting strategy-style game plays so that there is a limit on giving the fun, a nature of games, to learners who do not like games of this style. In this paper, a system for memorizing new English words is proposed which is based on a single-player car racing game targeting youths and adults. In the game, the core of our system, a learner drives a car and obtains game points by colliding with English word texts like game items appearing on the track. The learner keeps on viewing English words being exposed on the track while driving, resulting in memorizing those words according to a learning principle stating viewing is memorization. To our experiment, the effect of memorizing English words by our car racing game is good, and the degree of satisfaction with our system as a English vocabulary learning tool is reasonably high. Also, previous word games are suitable for the memory enforcement of English words but our game can be used for the memorization of new words.

Semantic Video Retrieval Based On User Preference (사용자 선호도를 고려한 의미기반 비디오 검색)

  • Jung, Min-Young;Park, Sung-Han
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.127-133
    • /
    • 2009
  • To ensure access to rapidly growing video collection, video indexing is becoming more and more essential. A database for video should be build for fast searching and extracting the accurate features of video information with more complex characteristics. Moreover, video indexing structure supports efficient retrieval of interesting contents to reflect user preferences. In this paper, we propose semantic video retrieval method based on user preference. Unlikely the previous methods do not consider user preferences. Futhermore, the conventional methods show the result as simple text matching for the user's query that does not supports the semantic search. To overcome these limitations, we develop a method for user preference analysis and present a method of video ontology construction for semantic retrieval. The simulation results show that the proposed algorithm performs better than previous methods in terms of semantic video retrieval based on user preferences.

Enterprise Architecture for Linking Administrative Affairs and Spatial Information (행정업무에 공간정보 연계활용을 위한 엔터프라이즈 아키텍처)

  • Youn, Jun-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.95-103
    • /
    • 2008
  • Spatial information is essential for administrative affairs. So many Administrative Information System(AIS)s and Geographic Information System(GIS)s have been implemented at local government to support administrative affairs. AIS deals with document based information, and is not designed to use map information. Also, various information is not matched, because address systems for AIS and coordinate system for GIS are different. Therefore, existing AIS and GIS are not suitable for linking administrative affairs and spatial information. This paper deals with the enterprise architecture for local government to support the linkage of administrative affairs and spatial information. Enterprise architecture in this paper is composed of business architecture, data architecture, application architecture, and technical architecture. Each architecture is designed up to planner's and owner's level. Detail structures of each architecture follow the practical guidance for applying e-government enterprise architecture in Korea. Business and data architecture are applied to transportation administrative affairs.

  • PDF

An Accurate Log Object Recognition Technique

  • Jiho, Ju;Byungchul, Tak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.89-97
    • /
    • 2023
  • In this paper, we propose factors that make log analysis difficult and design technique for detecting various objects embedded in the logs which helps in the subsequent analysis. In today's IT systems, logs have become a critical source data for many advanced AI analysis techniques. Although logs contain wealth of useful information, it is difficult to directly apply techniques since logs are semi-structured by nature. The factors that interfere with log analysis are various objects such as file path, identifiers, JSON documents, etc. We have designed a BERT-based object pattern recognition algorithm for these objects and performed object identification. Object pattern recognition algorithms are based on object definition, GROK pattern, and regular expression. We find that simple pattern matchings based on known patterns and regular expressions are ineffective. The results show significantly better accuracy than using only the patterns and regular expressions. In addition, in the case of the BERT model, the accuracy of classifying objects reached as high as 99%.

Similar sub-Trajectory Retrieval Technique based on Grid for Video Data (비디오 데이타를 위한 그리드 기반의 유사 부분 궤적 검색 기법)

  • Lee, Ki-Young;Lim, Myung-Jae;Kim, Kyu-Ho;Kim, Joung-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.183-189
    • /
    • 2009
  • Recently, PCS, PDA and mobile devices, such as the proliferation of spread, GPS (Global Positioning System) the use of, the rapid development of wireless network and a regular user even images, audio, video, multimedia data, such as increased use is for. In particular, video data among multimedia data, unlike the moving object, text or image data that contains information about the movements and changes in the space of time, depending on the kinds of changes that have sigongganjeok attributes. Spatial location of objects on the flow of time, changing according to the moving object (Moving Object) of the continuous movement trajectory of the meeting is called, from the user from the database that contains a given query trajectory and data trajectory similar to the finding of similar trajectory Search (Similar Sub-trajectory Retrieval) is called. To search for the trajectory, and these variations, and given the similar trajectory of the user query (Tolerance) in the search for a similar trajectory to approximate data matching (Approximate Matching) should be available. In addition, a large multimedia data from the database that you only want to be able to find a faster time-effective ways to search different from the existing research is required. To this end, in this paper effectively divided into a grid to search for the trajectory to the trajectory of moving objects, similar to the effective support of the search trajectory offers a new grid-based search techniques.

  • PDF

A Feature -Based Word Spotting for Content-Based Retrieval of Machine-Printed English Document Images (내용기반의 인쇄체 영문 문서 영상 검색을 위한 특징 기반 단어 검색)

  • Jeong, Gyu-Sik;Gwon, Hui-Ung
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1204-1218
    • /
    • 1999
  • 문서영상 검색을 위한 디지털도서관의 대부분은 논문제목과/또는 논문요약으로부터 만들어진 색인에 근거한 제한적인 검색기능을 제공하고 있다. 본 논문에서는 영문 문서영상전체에 대한 검색을 위한 단어 영상 형태 특징기반의 단어검색시스템을 제안한다. 본 논문에서는 검색의 효율성과 정확도를 높이기 위해 1) 기존의 단어검색시스템에서 사용된 특징들을 조합하여 사용하며, 2) 특징의 개수 및 위치뿐만 아니라 특징들의 순서를 포함하여 매칭하는 방법을 사용하며, 3) 특징비교에 의해 검색결과를 얻은 후에 여과목적으로 문자인식을 부분적으로 적용하는 2단계의 검색방법을 사용한다. 제안된 시스템의 동작은 다음과 같다. 문서 영상이 주어지면, 문서 영상 구조가 분석되고 단어 영역들의 조합으로 분할된다. 단어 영상의 특징들이 추출되어 저장된다. 사용자의 텍스트 질의가 주어지면 이에 대응되는 단어 영상이 만들어지며 이로부터 영상특징이 추출된다. 이 참조 특징과 저장된 특징들과 비교하여 유사한 단어를 검색하게 된다. 제안된 시스템은 IBM-PC를 이용한 웹 환경에서 구축되었으며, 영문 문서영상을 이용하여 실험이 수행되었다. 실험결과는 본 논문에서 제안하는 방법들의 유효성을 보여주고 있다. Abstract Most existing digital libraries for document image retrieval provide a limited retrieval service due to their indexing from document titles and/or the content of document abstracts. This paper proposes a word spotting system for full English document image retrieval based on word image shape features. In order to improve not only the efficiency but also the precision of a retrieval system, we develop the system by 1) using a combination of the holistic features which have been used in the existing word spotting systems, 2) performing image matching by comparing the order of features in a word in addition to the number of features and their positions, and 3) adopting 2 stage retrieval strategies by obtaining retrieval results by image feature matching and applying OCR(Optical Charater Recognition) partly to the results for filtering purpose. The proposed system operates as follows: given a document image, its structure is analyzed and is segmented into a set of word regions. Then, word shape features are extracted and stored. Given a user's query with text, features are extracted after its corresponding word image is generated. This reference model is compared with the stored features to find out similar words. The proposed system is implemented with IBM-PC in a web environment and its experiments are performed with English document images. Experimental results show the effectiveness of the proposed methods.

Overseas Address Data Quality Verification Technique using Artificial Intelligence Reflecting the Characteristics of Administrative System (국가별 행정체계 특성을 반영한 인공지능 활용 해외 주소데이터 품질검증 기법)

  • Jin-Sil Kim;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • In the global era, the importance of imported food safety management is increasing. Address information of overseas food companies is key information for imported food safety management, and must be verified for prompt response and follow-up management in the event of a food risk. However, because each country's address system is different, one verification system cannot verify the addresses of all countries. Also, the purpose of address verification may be different depending on the field used. In this paper, we deal with the problem of classifying a given overseas food business address into the administrative district level of the country. This is because, in the event of harm to imported food, it is necessary to find the administrative district level from the address of the relevant company, and based on this trace the food distribution route or take measures to ban imports. However, in some countries the administrative district level name is omitted from the address, and the same place name is used repeatedly in several administrative district levels, so it is not easy to accurately classify the administrative district level from the address. In this study we propose a deep learning-based administrative district level classification model suitable for this case, and verify the actual address data of overseas food companies. Specifically, a method of training using a label powerset in a multi-label classification model is used. To verify the proposed method, the accuracy was verified for the addresses of overseas manufacturing companies in Ecuador and Vietnam registered with the Ministry of Food and Drug Safety, and the accuracy was improved by 28.1% and 13%, respectively, compared to the existing classification model.

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.