• Title/Summary/Keyword: 텍스트 기반 질의응답

Search Result 37, Processing Time 0.025 seconds

Fusion-in-Decoder for Open Domain Multi-Modal Question Answering (FiD를 이용한 멀티 모달 오픈 도메인 질의 응답)

  • Eunhwan Park;Sung-Min Lee;Daeryong Seo;Donghyeon Jeon;Inho Kang;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.95-99
    • /
    • 2022
  • 오픈 도메인 질의 응답 (ODQA, Open-Domain Question Answering)은 주어진 질문에 대한 답을 찾는 과업으로서 질문과 관련있는 지식을 찾는 "검색" 단계를 필요로 한다. 최근 이미지, 테이블 등의 검색을 요구하는 멀티 모달 ODQA에 대한 연구가 많이 진행되었을 뿐만 아니라 산업에서의 중요도 또한 높아지고 있다. 본 논문은 여러 종류의 멀티 모달 ODQA 중에서도 테이블 - 텍스트 기반 멀티 모달 ODQA 데이터 집합으로 Fusion-in-Decoder (FiD)를 이용한 멀티 모달 오픈 도메인 질의 응답 연구를 제안하며 베이스라인 대비 최대 EM 20.5, F1 23.2 향상을 보였다.

  • PDF

A Quality Value Algorithm based on Text/Non-text Features in Q&A Documents (텍스트/비텍스트 특성기반 질의답변문서의 품질지수 알고리즘)

  • Kim, Deok-Ju;Park, Keon-Woo;Lee, Sang-Hun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.105-108
    • /
    • 2010
  • 쌍방향으로 질문과 답변을 하는 커뮤니티 기반의 지식검색서비스에서는 질의를 통해 원하는 답변을 얻을 수 있지만, 수많은 사용자들이 참여함에 따라 방대한 문서 속에서 검증된 문서를 찾아내는 것은 점점 더 어려워지고 있다. 지식검색서비스에서 기존 연구는 사용자들이 생성한 데이터 즉 추천수, 조회수 등의 비텍스트 정보를 이용하거나 답변의 길이, 자료첨부, 연결어 등의 텍스트 정보 이용하여 전문가를 식별하거나 문서의 품질을 평가하고, 이를 검색에 반영하여 검색성능을 향상시키는 데 활용했다. 그러나 비텍스트 정보는 질의/응답의 초기에 사용자들에 의해 충분한 정보를 확보할 수 없는 단점이 제기 되며, 텍스트 정보는 전체의 문서를 답변의 길이, 자료 첨부등과 같은 일부요인으로 판단해야하기 때문에 품질평가의 한계가 있다고 볼 수 있겠다. 본 논문에서는 이러한 비텍스트 정보와 텍스트 정보의 문제점을 개선하기 위한 품질평가 알고리즘을 제안한다. 제안된 알고리즘을 통한 품질지수는 텍스트/비텍스트 정보와 소셜 네트워크 사용자 중앙성을 고려하여 질문에 적합하고 신뢰성 있는 답변을 랭킹화 함으로써 지식검색문서를 분별하는 지표가 되며, 이는 지식검색서비스의 성능향상에 기여를 할 수 있을 것으로 기대된다.

  • PDF

Automated Answer Recommendation System Using Convolutional Neural Networks For Efficient Customer Service Based on Text (텍스트 기반 상담시스템의 효율성 제고를 위한 합성곱신경망을 이용한 자동답변추천 시스템)

  • Na, Hunyeob;Seo, Sanghyun;Yun, Jisang;Jung, Changhoon;Jeon, Yongjin;Kim, Juntae
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.272-275
    • /
    • 2017
  • 대면 서비스보다 비대면 서비스를 선호하는 소비자들의 증가로 인해 기업의 고객 응대의 형태도 변해가고 있다. 기존의 전화 상담보다는 인터넷에 글을 쓰는 형식으로 문의를 하는 고객이 증가하고 있으며, 관련 기업에서는 이와 같은 변화에 효율적으로 대처하기 위해, 텍스트 기반의 상담시스템에 대한 다양한 연구 및 투자를 하고 있다. 특히, 입력된 질의에 대해서 자동 답변하는 챗봇(ChatBot)이 주목받고 있으나, 낮은 답변 정확도로 인해 실제 응용에는 어려움을 겪고 있다. 이에 본 논문에서는 상담원이 중심이 되는 텍스트 기반의 상담시스템에서 상담원이 보다 쉽게 답변을 수행할 수 있도록 자동으로 답변을 추천해주는 자동답변추천 시스템을 제안한다. 실험에서는 기존 질의응답 시스템 구축에 주로 사용되는 문장유사도 알고리즘과 더불어 합성곱신경망을 이용한 자동답변추천 기법의 답변추천 성능을 비교한다. 실험 결과, 문장유사도 기반의 답변추천 기법보다 본 논문에서 제안한 합성곱신경망(Convolutional Neural Networks) 기반의 답변추천시스템이 더 뛰어난 답변추천 성능을 나타냄을 보였다.

  • PDF

Automated Answer Recommendation System Using Convolutional Neural Networks For Efficient Customer Service Based on Text (텍스트 기반 상담시스템의 효율성 제고를 위한 합성곱신경망을 이용한 자동답변추천 시스템)

  • Na, Hunyeob;Seo, Sanghyun;Yun, Jisang;Jung, Changhoon;Jeon, Yongjin;Kim, Juntae
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.272-275
    • /
    • 2017
  • 대면 서비스보다 비대면 서비스를 선호하는 소비자들의 증가로 인해 기업의 고객 응대의 형태도 변해가고 있다. 기존의 전화 상담보다는 인터넷에 글을 쓰는 형식으로 문의를 하는 고객이 증가하고 있으며, 관련 기업에서는 이와 같은 변화에 효율적으로 대처하기 위해, 텍스트 기반의 상담시스템에 대한 다양한 연구 및 투자를 하고 있다. 특히, 입력된 질의에 대해서 자동 답변하는 챗봇(ChatBot)이 주목받고 있으나, 낮은 답변 정확도로 인해 실제 응용에는 어려움을 겪고 있다. 이에 본 논문에서는 상담원이 중심이 되는 텍스트 기반의 상담시스템에서 상담원이 보다 쉽게 답변을 수행할 수 있도록 자동으로 답변을 추천해주는 자동답변추천 시스템을 제안한다. 실험에서는 기존 질의응답 시스템 구축에 주로 사용되는 문장유사도 알고리즘과 더불어 합성곱신경망을 이용한 자동답변추천 기법의 답변추천 성능을 비교한다. 실험 결과, 문장유사도 기반의 답변추천 기법보다 본 논문에서 제안한 합성곱신경망(Convolutional Neural Networks) 기반의 답변추천시스템이 더 뛰어난 답변추천 성능을 나타냄을 보였다.

  • PDF

Encyclopedia-Based Knowledge Base and Ontology for Question Answering System (질의응답 시스템을 위한 백과사전 기반 지식베이스와 온톨로지)

  • Choe, Ho-Seop;Ock, Cheol-Young;Kim, Chang-Hwan;Wang, Ji-Hyun;Jang, Myoung-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.177-183
    • /
    • 2003
  • 기존의 정보검색시스템이 사용자의 질의에 의해 키워드가 포함된 의미 있는 문서를 제공하는 시스템이라면, 질의응답시스템은 사용자 질의에 맞는 정답을 적절한 언어처리 기법을 통해 텍스트로부터 추출하여 제공하는 시스템이다. 이러한 언어처리 기법을 이용한 질의응답 시스템에서 시스템의 성능 향상에 도움을 줄 수 있는 것이, 실세계의 지식을 저장하고 있는 지식베이스라 할 수 있다. 지식베이스가 가지고 있는 실세계의 지식을 어떻게 효율적으로 활용하느냐에 따라 질의 처리 분석과 정답 확률을 향상시킬 수 있는 것이다. 본 논문에서는 실세계의 지식을 어느 정도 체계적 의미적으로 반영하고 있는 것을 백과사전으로 판단하여, 백과사전의 '인물' 범주(category)를 중심으로 백과사전 지식베이스의 틀을 마련하고자 하였다. 또한 어휘의 계층적 구조를 중심으로 한 온톨로지를 백과사전 지식베이스와 유기적으로 연결시킴으로써 보다 의미 있는 지식베이스를 형성하는 방안을 모색하고자 하였다.

  • PDF

Rule-Based Temporal Information Extraction for Korean (규칙 기반 한국어 시간 정보 추출)

  • Jeong, Young-Seob;Do, Hyo-Jin;Lim, Joon-Ho;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.242-246
    • /
    • 2014
  • 웹을 비롯한 다양한 곳에서 기하급수적으로 증가하고 있는 문서들로 인해, 자연어 텍스트로부터의 지식추출의 중요성이 점차 커지고 있다. 이 연구에서는 한국어로 작성된 자연어 텍스트로부터의 시간 정보 추출을 위해 개발된 시스템을 소개하고, 직접 구축한 한국어 데이터셋에 대한 성능 분석을 제공한다. 이 시스템은 사람이 직접 작성한 규칙들에 기반하여 작동하지만, 질의응답시스템 등에 적용될 수 있는 수준의 성능으로 향상시키기 위해 기계학습 기반의 시스템으로 업그레이드하는 등의 작업을 계속할 것이다.

  • PDF

Analysis and Design of Learning Support Tool through Multi-Casting Techniques (멀티 캐스팅 기법을 통한 학습지원도구의 분석 및 설계)

  • Kim, Jung-Soo;Shin, Ho-Jun;Han, Eun-Ju;Kim, Haeng-Kon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.727-730
    • /
    • 2001
  • 초고속 인터넷 서비스의 확대에 따라 이를 교육에 직 간접적으로 응용하기 위한 노력이 지속적으로 진행되어 왔다. 특히 웹 기반의 가상강의 저작도구를 통한 웹 코스웨어는 원거리 학습자들의 학습 욕구를 자기 주도적인 학습을 통해 가능케 했고 기존의 텍스트, 사운드를 통한 가상강의에서 동영상이 가미된 주문형 교육 서비스(EOD: Education On Demand)가 가능해졌다. 그러나 이를 이용하는 학습자는 전체적인 모듈의 이해를 통해 수업이 진행됨에 따라 학습과정에서는 질의응답을 튜터를 통해 웹 캐스팅이 이루어졌다. 따라서, 질의응답은 텍스트 형식의 E-mail, 채팅, 게시판, 방명록을 통해 이루어지므로 학습자가 요구한 질의 내용을 잘못 이해하고 튜터가 학습 과정에서의 피드백을 제공하지 못함으로써 개인 학습의 동기부여가 감소됨에 따라 흥미를 잃게 되었다. 본 논문에서는 이러한 문제점을 개선하기 위해 멀티 캐스팅 기법을 통해 교육용 서버를 이용한 학습지원도구를 분석, 설계한다. 가상강의는 기본적인 컨텐츠를 제시하고 그를 통해 수업이 진행되는 과정에서의 질의응답을 일대다(One-To-Many)의 멀티 캐스팅 서비스를 튜터가 지정한 교육용 서버를 통해 텍스트 형식이 아닌 강의자료로 쓰인 문서 파일에 직접 작성하여 전송하게 된다. 따라서 튜터는 메일링 서비스를 통해 질문사항을 자신의 폴더 서비스로 확인하고 즉시 학습자에게 피드백을 제공함으로써 튜터와 학습자들간의 커뮤니케이션이 활발히 이루어지며, 상호작용의 증가를 통해 웹 기반의 컨퍼런싱(WBC: Web Based Conferencing)을 가질 수 있게 된다.rver는 Client가 요청한 Content(services)를 전달 해 주는 컨텐트 전달 모듈(Content Deliver Module)과 서버 Phonebook 엑세스 모들(Server Phonebook Access Module)로 구성되어 있다.외 보다 높았다(I/O ratio 2.5). BTEX의 상대적 함량도 실내가 실외보다 높아 실내에도 발생원이 있음을 암시하고 있다. 자료 분석결과 유치원 실내의 벤젠은 실외로부터 유입되고 있었고, 톨루엔, 에틸벤젠, 크실렌은 실외뿐 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화

  • PDF

Methods of Korean Text Data Quality Assessment (한국어 텍스트 데이터의 품질 평가 요소 및 방법)

  • Kim, Jung-Wook;Hong, Cho-hee;Lee, Saebyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.619-622
    • /
    • 2018
  • 최근 데이터의 형태는 점점 다양화되고 증가하고 있기 때문에 데이터의 체계적 분류 및 관리의 필요성이 증대되고 있다. 이러한 목적을 위하여 데이터에 대한 품질 평가는 중요한 요소가 된다. 최근 데이터는 기존의 정형화된 데이터보다 비정형 데이터가 대부분을 차지하고 있다. 그러나 기존의 데이터 품질 평가는 정형 데이터에 편중되어 왔다. 따라서 다양한 형태와 의미를 가지고 있는 비정형 데이터는 기존의 평가 기술로는 품질을 측정하기 어렵다. 이와 같은 문제로 본 논문은 텍스트기반의 비정형 데이터에 적용 가능한 영역별 평가 지표를 구축하고, 신문기사와 커뮤니티(질의응답)데이터를 사용하여 각 요소별 품질을 측정하여 그 결과에 대해서 고찰하였다.

  • PDF

Multi-Session Open Domain Knowledge-based dialog collection Tool (멀티-세션 오픈 도메인 지식기반 대화 수집 툴)

  • Tae-Yong Kim;San Kim;Saim Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.491-496
    • /
    • 2022
  • 최근 멀티-세션 데이터로 장기간 페르소나와 대화 일관성을 유지하며 인터넷에서 대화와 관련된 지식을 활용하는 대화모델 연구가 활발히 진행되고 있다. 하지만 이를 위한 한국어 멀티-세션 오픈 도메인 지식 기반 대화 데이터는 공개되지 않아 한국어 대화모델 연구에 어려움이 있다. 따라서 본 논문에서는 한국어 멀티-세션 오픈 도메인 지식 기반 데이터의 필요성을 시사하고, 데이터 수집을 위한 툴을 제안한다. 제안하는 수집 툴은 양질의 데이터 수집을 위해 작업자들이 사용하기 편하도록 UI/UX를 구성하였으며, 대화 생성 시 텍스트뿐만 아니라 정보가 밀집된 테이블도 대화에 활용할 지식으로 참조할 수 있도록 구현하였다. 제안하는 수집 툴은 웹 랜덤채팅 시스템에 기반을 두어 작업자가 여러 다른 작업자와 같은 확률로 매칭되게 구현되었으며, 일정 확률로 기존 대화로부터 대화를 시작하도록 함으로써 멀티-세션 대화 수집이 가능하도록 하였다.

  • PDF

Korean Named Entity Recognition Based on Supervised Learning Using Named Entily Construction Principles (개체명 구성 원리를 이용한 교사학습 기반의 한국어 개체명 인식)

  • Hwang, Yi-Gyu;Lee, Hyun-Sook;Chung, Eui-Sok;Yun, Bo-Hyun;Park, Sang-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.111-117
    • /
    • 2002
  • 개체명 인식은 질의응답(QA), 정보 주줄(IE), 텍스트 마이닝 시스템의 성능 향상에 중요한 역할을 담당한다. 이 논문에서는 교사학습 기반의 한국어 개체명 인식에 대해 설명한다. 한국어에서 많은 개체명들이 하나 이상의 단어로 구성되어 있으며, 개체명을 구성하는 단어 사이에는 의존 관계가 존재하고, 개체명과 개체명 주위의 단어 사이에도 문맥적 의존관계를 가지고 있다. 본 논문에서는 가변길이의 개체명과 주변 문맥의 학습을 위해 트라이그램을 이용한 HMM을 사용하였으며, 자료 부족 문제를 해소하기 위해 어휘 기반이 아닌 부개체 유형 기반의 학습을 수행하였다. 학습된 개체명 인식 시스템을 이용하여 경제 분야의 신문 기사에 대한 실험 결과, 84.4%의 정확률과 90.9%의 재현률을 보였다.

  • PDF