Annual Conference on Human and Language Technology
/
2022.10a
/
pp.455-460
/
2022
오픈 도메인 질의 응답에서 질의에 대한 답변은 질의에 대한 관련 문서를 검색한 다음 질의에 대한 답변을 포함할 수 있는 검색된 문서를 분석함으로써 얻어진다. 문서내의 테이블이 질의와 관련이 있을 수 있음에도 불구하고, 기존의 연구는 주로 문서의 텍스트 부분만을 검색하는 데 초점을 맞추고 있었다. 이에 테이블과 텍스트를 모두 고려하는 질의응답과 관련된 연구가 진행되었으나 테이블의 구조적 정보가 손실되는 등의 한계가 있었다. 본 연구에서는 테이블의 구조적 정보를 모델의 추가적인 임베딩을 통해 활용한 오픈 도메인 질의응답 시스템인 R3를 제안한다. R3는 오픈 도메인 질의 응답 데이터셋인 NQ에 기반한 새로운 데이터셋인 NQ-Open-Multi를 이용해 학습 및 평가하였으며, 테이블의 구조적 정보를 활용하지 않은 시스템에 비해 더 좋은 성능을 보임을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.87-90
/
2020
표 질의응답은 반-정형화된 표 데이터에서 질문에 대한 답을 찾는 문제이다. 본 연구에서는 한국어 표 질의응답을 위한 표 데이터에 적합한 TAPAS를 이용한 언어모델 사전학습 방법과 표에서 정답이 있는 셀을 예측하고 선택된 셀에서 정확한 정답의 경계를 예측하기 위한 표 질의응답 모형을 제안한다. 표 사전학습을 위해서 약 10만 개의 표 데이터를 활용했으며, 텍스트 데이터에 사전학습된 BERT 모델을 이용하여 TAPAS를 사전학습한 모델이 가장 좋은 성능을 보였다. 기계독해 모델을 적용했을 때 EM 46.8%, F1 63.8%로 텍스트 텍스트에 사전학습된 모델로 파인튜닝한 것과 비교하여 EM 6.7%, F1 12.9% 향상된 것을 보였다. 표 질의응답 모델의 경우 TAPAS를 통해 생성된 임베딩을 이용하여 행과 열의 임베딩을 추출하고 TAPAS 임베딩, 행과 열의 임베딩을 결합하여 기계독해 모델을 적용했을 때 EM 63.6%, F1 76.0%의 성능을 보였다.
There is increasing interest in text analysis based on unstructured data such as articles and comments, questions and answers. This is because they can be used to identify, evaluate, predict, and recommend features from unstructured text data, which is the opinion of people. The same holds true for TEL, where the MOOC service has evolved to automate debating, questioning and answering services based on the teaching-learning support system in order to generate question topics and to automatically classify the topics relevant to new questions based on question and answer data accumulated in the system. Therefore, in this study, we propose topic modeling using LDA to automatically classify new query topics. The proposed method enables the generation of a dictionary of question topics and the automatic classification of topics relevant to new questions. Experimentation showed high automatic classification of over 0.7 in some queries. The more new queries were included in the various topics, the better the automatic classification results.
Visual Question Answering (VQA) and image captioning are tasks that require understanding of the features of images and linguistic features of text. Therefore, co-attention may be the key to both tasks, which can connect image and text. In this paper, we propose a model to achieve high performance for VQA by image caption generated using a pretrained standard transformer model based on MSCOCO dataset. Captions unrelated to the question can rather interfere with answering, so some captions similar to the question were selected to use based on a similarity to the question. In addition, stopwords in the caption could not affect or interfere with answering, so the experiment was conducted after removing stopwords. Experiments were conducted on VQA-v2 data to compare the proposed model with the deep modular co-attention network (MCAN) model, which showed good performance by using co-attention between images and text. As a result, the proposed model outperformed the MCAN model.
KIPS Transactions on Software and Data Engineering
/
v.7
no.12
/
pp.485-496
/
2018
So far, the deep learning, a field of artificial intelligence, has achieved remarkable results in solving problems from unstructured data. However, it is difficult to comprehensively judge situations like humans, and did not reach the level of intelligence that deduced their relations and predicted the next situation. Recently, deep neural networks show that artificial intelligence can possess powerful relational reasoning that is core intellectual ability of human being. In this paper, to analyze and observe the performance of Relation Networks (RN) among the neural networks for relational reasoning, two types of RN-based deep neural network models were constructed and compared with the baseline model. One is a visual question answering RN model using Sort-of-CLEVR and the other is a text-based question answering RN model using bAbI task. In order to maximize the performance of the RN-based model, various performance improvement experiments such as hyper parameters tuning have been proposed and performed. The effectiveness of the proposed performance improvement methods has been verified by applying to the visual QA RN model and the text-based QA RN model, and the new domain model using the dialogue-based LL dataset. As a result of the various experiments, it is found that the initial learning rate is a key factor in determining the performance of the model in both types of RN models. We have observed that the optimal initial learning rate setting found by the proposed random search method can improve the performance of the model up to 99.8%.
Park, Cheoneum;Lee, Changki;Park, Soyoon;Lim, Seungyoung;Kim, Myungji;Lee, Jooyoul
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.273-277
/
2018
기계가 주어진 텍스트를 이해하고 추론하는 능력을 기계독해 능력이라 한다. 기계독해는 질의응답 태스크에 적용될 수 있는데 이것을 기계독해 질의응답이라 한다. 기계독해 질의응답은 주어진 질문과 문서를 이해하고 이를 기반으로 질문에 적합한 답을 출력하는 태스크이다. 본 논문에서는 구조화된 표 형식 데이터로부터 질문에 대한 답을 추론하는 TableQA 태스크를 소개하고, $S^3-NET$을 이용하여 TableQA 문제를 해결할 것을 제안한다. 실험 결과, 본 논문에서 제안한 방법이 EM 96.36%, F1 97.04%로 우수한 성능을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.601-603
/
2001
초고속 인터넷 망의 구축에 따라 정보통신 교육이 활성화에 힘입어 직.간접적으로 응용하기 위한 노력이 지속적으로 진행되어 왔다. 웹 기반 원격강의는 원거리 학습자들의 학습욕구를 자기 주도적인 학습이 되도록 전체적인 수업을 진행하므로 학습과정에서의 질의 응답을 교수자에게 면대면으로 제공하지 못하였다. 따라서 학습자가 요구한 질의 내용을 잘못 이해함에 따라 교수자가 학습과정에서의 피드백 제공을 하지 못함으로써 개인학습의 동기부여가 감소됨에 따라 흥미를 입게 되었다. 따라서, 본 논문에서는 웹 기반 서비스에 대한 체계적인 분석 및 설계를 위해 네비게이션 모델을 통해 질의 응답을 지원하는 QALT(Question Answer Learning Tool)를 설계 및 구현한다. 원격강의는 웹 상에서 기본적인 컨텐츠를 제시하고 그를 통해 수업이 진행되는 과정에서의 질의 응답의 문제점을 개선하기 위해 일다대(One-To-Many)의 서비스를 제공한다. 또한. 학습자는 교수자가 지정한 교육용 서버를 통해 텍스트 형식이 아닌 강의자료로 쓰인 문서파일에 직접 작성하여 질의 응답을 가능하게 된다. 그로 인해 교수자와 학생간의 질의 응답을 통해 상호작용을 원활하게 할 수 있는 보조학습도구로써의 사용이 증가될 것이다. 또한 서버에서의 폴더 서비스와 메일링 서비스를 통해 실시간 질의 응답이 가능함으로써 학습자는 강의파일에서 그림에 관한 질문에 효과를 볼 수 있고 교수자는 질문 받은 내용의 위치를 시각적으로 쉽게 볼 수 있으므로 빠른 응답이 가능하게 될 것이다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.548-553
/
2021
비디오 질의 응답은 입력으로 주어진 비디오와 질문에 적절할 정답을 제공하기 위해 텍스트, 이미지 등 다양한 정보처리가 요구되는 대표적인 multi-modal 문제이다. 질의 응답 시스템은 질의 응답의 성능을 높이기 위해 다수의 서로 다른 응답 모듈을 사용하기도 하며 생성된 정답 후보군 중 가장 적절할 정답을 선택하는 정답 선택 모듈이 필요하다. 정답 선택 모듈은 응답 모듈의 서로 다른 관점을 고려하여 응답 선택을 선택할 필요성이 있다. 하지만 응답 모듈이 black-box 모델인 경우 정답 선택 모듈은 응답 모듈의 parameter와 예측 분포를 통해 지식을 전달 받기 어렵다. 그리고 학습 데이터셋은 응답 모듈이 학습에 사용했기 때문에 과적합 문제로 각 모듈의 관점을 학습하기엔 어려우며 학습 데이터셋 이외 비교적 적은 데이터셋으로 학습해야 하는 문제점이 있다. 본 논문에서는 정답 선택 성능을 높이기 위해 전이 학습 기반의 멀티모달 퓨전 정답 선택 모델을 제안한다. DramaQA 데이터셋을 통해 성능을 측정하여 제안된 모델의 우수성을 실험적으로 증명하였다.
Jeongjae Nam;Wooyoung Kim;Sangduk Baek;Wonjun Lee;Taeyong Kim;Hyunsoo Yoon;Wooju Kim
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.581-585
/
2023
Question Answering(QA)은 질문과 문맥에 대한 정보를 토대로 적절한 답변을 도출하는 작업이다. 이때 입력으로 주어지는 문맥 텍스트는 대부분 길기 때문에 QA 모델은 이 정보를 처리하기 위해 상당한 컴퓨팅 자원이 필요하다. 이 문제를 해결하기 위해 본 논문에서는 요약 모델을 활용한 요약 기반 QA 모델 프레임워크를 제안한다. 이를 통해 문맥 정보를 효과적으로 요약하면서도 QA 모델의 컴퓨팅 비용을 줄이고 성능을 유지하는 것을 목표로 한다.
Community question and answering service is one of the main sources of information and knowledge in the Web. The quality of information in question and answer documents is determined by the clarity of the question and the relevance of the answers, and the readability of a document is a key factor for evaluating the quality. This study is to measure the quality of documents used in community question and answering service. For this purpose, we compare the frequency of occurrence by vocabulary level used in community documents and measure the readability index of documents by institution of author. To measure the readability index, we used the Dale-Chall formula which is calculated by vocabulary level and sentence length. The results show that the vocabulary used in the answers is more difficult than in the questions and the sentence length is longer. The gap in readability between questions and answers is also found by writing institution. The results of this study can be used as basic data for improving online counseling services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.