• Title/Summary/Keyword: 텍스트 기반 질의응답

Search Result 37, Processing Time 0.028 seconds

R3 : Open Domain Question Answering System Using Structure Information of Tables (R3 : 테이블의 구조 정보를 활용한 오픈 도메인 질의응답 시스템)

  • Deokhyung Kang;Gary Geunbae Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.455-460
    • /
    • 2022
  • 오픈 도메인 질의 응답에서 질의에 대한 답변은 질의에 대한 관련 문서를 검색한 다음 질의에 대한 답변을 포함할 수 있는 검색된 문서를 분석함으로써 얻어진다. 문서내의 테이블이 질의와 관련이 있을 수 있음에도 불구하고, 기존의 연구는 주로 문서의 텍스트 부분만을 검색하는 데 초점을 맞추고 있었다. 이에 테이블과 텍스트를 모두 고려하는 질의응답과 관련된 연구가 진행되었으나 테이블의 구조적 정보가 손실되는 등의 한계가 있었다. 본 연구에서는 테이블의 구조적 정보를 모델의 추가적인 임베딩을 통해 활용한 오픈 도메인 질의응답 시스템인 R3를 제안한다. R3는 오픈 도메인 질의 응답 데이터셋인 NQ에 기반한 새로운 데이터셋인 NQ-Open-Multi를 이용해 학습 및 평가하였으며, 테이블의 구조적 정보를 활용하지 않은 시스템에 비해 더 좋은 성능을 보임을 확인할 수 있었다.

  • PDF

Table Question Answering based on Pre-trained Language Model using TAPAS (TAPAS를 이용한 사전학습 언어 모델 기반의 표 질의응답)

  • Cho, Sanghyun;Kim, Minho;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.87-90
    • /
    • 2020
  • 표 질의응답은 반-정형화된 표 데이터에서 질문에 대한 답을 찾는 문제이다. 본 연구에서는 한국어 표 질의응답을 위한 표 데이터에 적합한 TAPAS를 이용한 언어모델 사전학습 방법과 표에서 정답이 있는 셀을 예측하고 선택된 셀에서 정확한 정답의 경계를 예측하기 위한 표 질의응답 모형을 제안한다. 표 사전학습을 위해서 약 10만 개의 표 데이터를 활용했으며, 텍스트 데이터에 사전학습된 BERT 모델을 이용하여 TAPAS를 사전학습한 모델이 가장 좋은 성능을 보였다. 기계독해 모델을 적용했을 때 EM 46.8%, F1 63.8%로 텍스트 텍스트에 사전학습된 모델로 파인튜닝한 것과 비교하여 EM 6.7%, F1 12.9% 향상된 것을 보였다. 표 질의응답 모델의 경우 TAPAS를 통해 생성된 임베딩을 이용하여 행과 열의 임베딩을 추출하고 TAPAS 임베딩, 행과 열의 임베딩을 결합하여 기계독해 모델을 적용했을 때 EM 63.6%, F1 76.0%의 성능을 보였다.

  • PDF

Topic modeling for automatic classification of learner question and answer in teaching-learning support system (교수-학습지원시스템에서 학습자 질의응답 자동분류를 위한 토픽 모델링)

  • Kim, Kyungrog;Song, Hye jin;Moon, Nammee
    • Journal of Digital Contents Society
    • /
    • v.18 no.2
    • /
    • pp.339-346
    • /
    • 2017
  • There is increasing interest in text analysis based on unstructured data such as articles and comments, questions and answers. This is because they can be used to identify, evaluate, predict, and recommend features from unstructured text data, which is the opinion of people. The same holds true for TEL, where the MOOC service has evolved to automate debating, questioning and answering services based on the teaching-learning support system in order to generate question topics and to automatically classify the topics relevant to new questions based on question and answer data accumulated in the system. Therefore, in this study, we propose topic modeling using LDA to automatically classify new query topics. The proposed method enables the generation of a dictionary of question topics and the automatic classification of topics relevant to new questions. Experimentation showed high automatic classification of over 0.7 in some queries. The more new queries were included in the various topics, the better the automatic classification results.

Using similarity based image caption to aid visual question answering (유사도 기반 이미지 캡션을 이용한 시각질의응답 연구)

  • Kang, Joonseo;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.191-204
    • /
    • 2021
  • Visual Question Answering (VQA) and image captioning are tasks that require understanding of the features of images and linguistic features of text. Therefore, co-attention may be the key to both tasks, which can connect image and text. In this paper, we propose a model to achieve high performance for VQA by image caption generated using a pretrained standard transformer model based on MSCOCO dataset. Captions unrelated to the question can rather interfere with answering, so some captions similar to the question were selected to use based on a similarity to the question. In addition, stopwords in the caption could not affect or interfere with answering, so the experiment was conducted after removing stopwords. Experiments were conducted on VQA-v2 data to compare the proposed model with the deep modular co-attention network (MCAN) model, which showed good performance by using co-attention between images and text. As a result, the proposed model outperformed the MCAN model.

A Study on Improving Performance of the Deep Neural Network Model for Relational Reasoning (관계 추론 심층 신경망 모델의 성능개선 연구)

  • Lee, Hyun-Ok;Lim, Heui-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.12
    • /
    • pp.485-496
    • /
    • 2018
  • So far, the deep learning, a field of artificial intelligence, has achieved remarkable results in solving problems from unstructured data. However, it is difficult to comprehensively judge situations like humans, and did not reach the level of intelligence that deduced their relations and predicted the next situation. Recently, deep neural networks show that artificial intelligence can possess powerful relational reasoning that is core intellectual ability of human being. In this paper, to analyze and observe the performance of Relation Networks (RN) among the neural networks for relational reasoning, two types of RN-based deep neural network models were constructed and compared with the baseline model. One is a visual question answering RN model using Sort-of-CLEVR and the other is a text-based question answering RN model using bAbI task. In order to maximize the performance of the RN-based model, various performance improvement experiments such as hyper parameters tuning have been proposed and performed. The effectiveness of the proposed performance improvement methods has been verified by applying to the visual QA RN model and the text-based QA RN model, and the new domain model using the dialogue-based LL dataset. As a result of the various experiments, it is found that the initial learning rate is a key factor in determining the performance of the model in both types of RN models. We have observed that the optimal initial learning rate setting found by the proposed random search method can improve the performance of the model up to 99.8%.

Structured Data Question Answering using S3-NET (S3-NET을 이용한 정형 데이터 질의 응답)

  • Park, Cheoneum;Lee, Changki;Park, Soyoon;Lim, Seungyoung;Kim, Myungji;Lee, Jooyoul
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.273-277
    • /
    • 2018
  • 기계가 주어진 텍스트를 이해하고 추론하는 능력을 기계독해 능력이라 한다. 기계독해는 질의응답 태스크에 적용될 수 있는데 이것을 기계독해 질의응답이라 한다. 기계독해 질의응답은 주어진 질문과 문서를 이해하고 이를 기반으로 질문에 적합한 답을 출력하는 태스크이다. 본 논문에서는 구조화된 표 형식 데이터로부터 질문에 대한 답을 추론하는 TableQA 태스크를 소개하고, $S^3-NET$을 이용하여 TableQA 문제를 해결할 것을 제안한다. 실험 결과, 본 논문에서 제안한 방법이 EM 96.36%, F1 97.04%로 우수한 성능을 보였다.

  • PDF

Design and Implementation of QALT using Navigation Model (네비게이션 모델을 이용한 QALT의 설계 및 구현)

  • 김행곤;신호준;김정수;한은주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.601-603
    • /
    • 2001
  • 초고속 인터넷 망의 구축에 따라 정보통신 교육이 활성화에 힘입어 직.간접적으로 응용하기 위한 노력이 지속적으로 진행되어 왔다. 웹 기반 원격강의는 원거리 학습자들의 학습욕구를 자기 주도적인 학습이 되도록 전체적인 수업을 진행하므로 학습과정에서의 질의 응답을 교수자에게 면대면으로 제공하지 못하였다. 따라서 학습자가 요구한 질의 내용을 잘못 이해함에 따라 교수자가 학습과정에서의 피드백 제공을 하지 못함으로써 개인학습의 동기부여가 감소됨에 따라 흥미를 입게 되었다. 따라서, 본 논문에서는 웹 기반 서비스에 대한 체계적인 분석 및 설계를 위해 네비게이션 모델을 통해 질의 응답을 지원하는 QALT(Question Answer Learning Tool)를 설계 및 구현한다. 원격강의는 웹 상에서 기본적인 컨텐츠를 제시하고 그를 통해 수업이 진행되는 과정에서의 질의 응답의 문제점을 개선하기 위해 일다대(One-To-Many)의 서비스를 제공한다. 또한. 학습자는 교수자가 지정한 교육용 서버를 통해 텍스트 형식이 아닌 강의자료로 쓰인 문서파일에 직접 작성하여 질의 응답을 가능하게 된다. 그로 인해 교수자와 학생간의 질의 응답을 통해 상호작용을 원활하게 할 수 있는 보조학습도구로써의 사용이 증가될 것이다. 또한 서버에서의 폴더 서비스와 메일링 서비스를 통해 실시간 질의 응답이 가능함으로써 학습자는 강의파일에서 그림에 관한 질문에 효과를 볼 수 있고 교수자는 질문 받은 내용의 위치를 시각적으로 쉽게 볼 수 있으므로 빠른 응답이 가능하게 될 것이다.

  • PDF

Transfer Learning-based Multi-Modal Fusion Answer Selection Model for Video Question Answering System (비디오 질의 응답 시스템을 위한 전이 학습 기반의 멀티 모달 퓨전 정답 선택 모델)

  • Park, Gyu-Min;Park, Seung-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.548-553
    • /
    • 2021
  • 비디오 질의 응답은 입력으로 주어진 비디오와 질문에 적절할 정답을 제공하기 위해 텍스트, 이미지 등 다양한 정보처리가 요구되는 대표적인 multi-modal 문제이다. 질의 응답 시스템은 질의 응답의 성능을 높이기 위해 다수의 서로 다른 응답 모듈을 사용하기도 하며 생성된 정답 후보군 중 가장 적절할 정답을 선택하는 정답 선택 모듈이 필요하다. 정답 선택 모듈은 응답 모듈의 서로 다른 관점을 고려하여 응답 선택을 선택할 필요성이 있다. 하지만 응답 모듈이 black-box 모델인 경우 정답 선택 모듈은 응답 모듈의 parameter와 예측 분포를 통해 지식을 전달 받기 어렵다. 그리고 학습 데이터셋은 응답 모듈이 학습에 사용했기 때문에 과적합 문제로 각 모듈의 관점을 학습하기엔 어려우며 학습 데이터셋 이외 비교적 적은 데이터셋으로 학습해야 하는 문제점이 있다. 본 논문에서는 정답 선택 성능을 높이기 위해 전이 학습 기반의 멀티모달 퓨전 정답 선택 모델을 제안한다. DramaQA 데이터셋을 통해 성능을 측정하여 제안된 모델의 우수성을 실험적으로 증명하였다.

  • PDF

A Study on Korean Generative Question-Answering with Contextual Summarization (문맥 요약을 접목한 한국어 생성형 질의응답 모델 연구)

  • Jeongjae Nam;Wooyoung Kim;Sangduk Baek;Wonjun Lee;Taeyong Kim;Hyunsoo Yoon;Wooju Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.581-585
    • /
    • 2023
  • Question Answering(QA)은 질문과 문맥에 대한 정보를 토대로 적절한 답변을 도출하는 작업이다. 이때 입력으로 주어지는 문맥 텍스트는 대부분 길기 때문에 QA 모델은 이 정보를 처리하기 위해 상당한 컴퓨팅 자원이 필요하다. 이 문제를 해결하기 위해 본 논문에서는 요약 모델을 활용한 요약 기반 QA 모델 프레임워크를 제안한다. 이를 통해 문맥 정보를 효과적으로 요약하면서도 QA 모델의 컴퓨팅 비용을 줄이고 성능을 유지하는 것을 목표로 한다.

  • PDF

Comparison of Readability between Documents in the Community Question-Answering (질의응답 커뮤니티에서 문서 간 이독성 비교)

  • Mun, Gil-Seong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.25-34
    • /
    • 2020
  • Community question and answering service is one of the main sources of information and knowledge in the Web. The quality of information in question and answer documents is determined by the clarity of the question and the relevance of the answers, and the readability of a document is a key factor for evaluating the quality. This study is to measure the quality of documents used in community question and answering service. For this purpose, we compare the frequency of occurrence by vocabulary level used in community documents and measure the readability index of documents by institution of author. To measure the readability index, we used the Dale-Chall formula which is calculated by vocabulary level and sentence length. The results show that the vocabulary used in the answers is more difficult than in the questions and the sentence length is longer. The gap in readability between questions and answers is also found by writing institution. The results of this study can be used as basic data for improving online counseling services.