Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.184-185
/
2022
인터넷 환경의 변화에 따라 텍스트 기반의 정보 전달에서 멀티미디어 기반의 스트리밍 방식으로 바뀌어가고 있다. 또한 대용량의 동영상 데이터뿐 아니라 Shorts, Clip Reels 또는 등 다양한 방식의 동영상 형태로 배포되고 있으며 서비스 플랫폼에서는 손쉽게 편집할 수 있도록 기능을 제공하고 있다. 대용량 콘텐츠, TV, Youtue 콘텐츠를 포함하여 소용량 동영상 편집에 필요한 영상 제작 기술에서 가장 인력과 시간이 많이 소요되는 부분은 편집 단계로 딥러닝 기반 인공지능 기술을 활용하여 자동화하고 있으며 영상편집에서 가장 기본이 되는 단위인 씬검출 기법을 개발하였다. 키프레임 검출 기법과 유사도 기법을 이용하여 씬을 추출하였으며 블록 Cost Function을 이용하여 최적화하여 0.5214의 정확도를 도출하였다.
In this paper, we introduce the method that a user analyses the similarity of the two programs by using keyword from the syntactic tree, created after the syntax analysis, and its implementation. The main advantage of the method is the performance improvement through using only keyword of syntax tree. In the paper, we propose the similarity evaluation model and how we extract keyword from syntax tree. In addition, we also show the improvement in the performance in analysis and in the system's structure. We expect that our system will be utilized in the similarity evaluation in text and XML documents.
Journal of the Korean Society for information Management
/
v.33
no.3
/
pp.155-176
/
2016
This study aims to develope a scholarly metadata information system based on conceptual elements of text structure of Korean studies research articles and to identify the applicability of text structure based metadata as compared with the existing similar system. For the study, we constructed a database(Korean Studies Metadata Database, KMD) with text structure based on metadata of Korean Studies journal articles selected from the Korea Citation Index(KCI). Then we verified differences between KCI system and KMD system through search results using same keywords. As a result, KMD system shows the search results which meet the users' intention of searching more efficiently in comparison with the KCI system. In other words, even if keyword combinations and conditional expressions of searching execution are same, KMD system can directly present the content of research purposes, research data, and spatial-temporal contexts of research et cetera as search results through the search procedure.
With the recent rapid development of ICT(Information and Communication Technology) and the popularization of digital devices, the size of the online market continues to grow. As a result, we live in a flood of information. Thus, customers are facing information overload problems that require a lot of time and money to select products. Therefore, a personalized recommender system has become an essential methodology to address such issues. Collaborative Filtering(CF) is the most widely used recommender system. Traditional recommender systems mainly utilize quantitative data such as rating values, resulting in poor recommendation accuracy. Quantitative data cannot fully reflect the user's preference. To solve such a problem, studies that reflect qualitative data, such as review contents, are being actively conducted these days. To quantify user review contents, text mining was used in this study. The general CF consists of the following three steps: user-item matrix generation, Top-N neighborhood group search, and Top-K recommendation list generation. In this study, we propose a recommendation algorithm that applies an extended similarity measure, which utilize quantified review contents in addition to user rating values. After calculating review similarity by applying TF-IDF, Word2Vec, and Doc2Vec techniques to review content, extended similarity is created by combining user rating similarity and quantified review contents. To verify this, we used user ratings and review data from the e-commerce site Amazon's "Health and Personal Care". The proposed recommendation model using extended similarity measure showed superior performance to the traditional recommendation model using only user rating value-based similarity measure. In addition, among the various text mining techniques, the similarity obtained using the TF-IDF technique showed the best performance when used in the neighbor group search and recommendation list generation step.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.219-220
/
2016
본 논문에서는 컴퓨터비전 기술 기반의 라이브러리를 이용해 미아 얼굴 정보를 중심으로 매칭을 하는 시스템으로서, 미아 데이터베이스에 등록된 얼굴과 유사한 미아를 정확도 순으로 배열해 주는 시스템을 개발한다. 이는 기존의 텍스트 정보 중심의 미아에 대한 정보 등록 및 조회를 하게 되었을 때 발생하는 정보의 부정확성 등의 문제점을 해결하고 편하고 빠르고 정확하게 정보 입력과 매칭을 함으로써 골든 타임 안에 미아를 찾을 수 있는 장점이 있다.
Proceedings of the Korea Information Processing Society Conference
/
2002.04a
/
pp.97-100
/
2002
이미지, 비디오, 오디오와 같은 멀티미디어 데이터들은 텍스트기반의 데이터에 비하여 대용량이고 비정형적인 특성을 가지기 때문에 검색이 어렵다. 또한 멀티미디어 데이터의 특징은 행렬이나 벡터의 형태로 표현되기 때문에 완전일치 검색이 아닌 유사 검색을 수행하여 사용자가 원하는 이미지와 유사한 이미지를 검색해야 한다. 본 연구에서는 멀티미디어 데이터 검색에 클러스터링와 인덱싱 기법을 같이 적용하여 유사한 이미지끼리는 인접 디스크에 클러스터하고 이 클러스터에 접근하는 인덱스를 구축하여 검색이 빠르게 이루어지는 유사 검색방법을 제안한다 제안 검색 방법은 클러스터링을 생성하는 알고리즘과 해싱기법의 인덱싱을 같이 적용함으로써 VQ(Vector Quantization)보다 높은 재현율과 정확도를 보인다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.527-528
/
2022
빠르게 변하는 환경에 맞춰 평생 교육이 일반화되고 개인에게 요구되는 학습량은 많아지고 있으며 높아진 학습량에 맞게 학습 시간 단축과 효율적인 학습을 위한 학습 방법을 선택하는 것이 중요해지고 있다. 본 논문에서는 학습 정리를 위해 작성한 문서를 분석하여 해당 문서와 관련된 문서를 제안하고 본 문서와 엮어 학습을 위한 문서 묶음을 만들 수 있는 시스템을 제안한다. 문서의 유사도, 중요도를 구할 수 있는 TF-IDF를 이용하여 문서를 분석해 키워드를 추출한 다음 그와 관련된 문서를 제안하고 문서 묶음을 만들어 조회할 수 있도록 한다. 이 시스템은 학습 정리 시 관련 문서를 함께 볼 수 있도록 하고, 필요하다면 묶음으로 만들어 효과적인 학습을 위한 도구로 이용할 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.37-39
/
2021
청와대 국민 청원 게시판은 중복되는 국민 청원글과 20만 이상의 동의를 받았지만 관리자의 검토로 인해 답변이 지연되는 청원글들이 존재한다. 이는 중복 청원으로 인해 청원 동의 인원이 분산되고 답변이 지연되는 문제로 인해 국민들의 불만을 일으킨다. 따라서, 유사한 청원글을 분류하고 동일한 청원 참여 기간 내 유사한 청원글 수를 기반으로 20만 명 이상의 동의를 받을 청원 예측 모델을 구축하였다. 본문 내용만을 LSTM 모델에 적용했을 때 68%의 정확도, 20만 명 이상의 동의를 받은 청원 글에 대해서는 Precision 60%, F1-score 60%이었으나 청원 동의 가능 기간 내 유사한 글의 개수, 본문 길이, 제목의 길이를 추가하였을 때 모델은 74%의 정확도와 20만 명 이상의 동의를 받은 청원 글에 대해 74%의 Precision, 70%의 F1-score로 본문 내용만으로 학습한 모델보다 예측력이 더 높았다.
이미지나 비디오, 오디오와 같이 멀티미디어 데이터들은 기존의 단순한 텍스트 기반의 데이터에 비하여 대용량적인 특성과 비정형적인 특성을 가지고 있어서 검색시 많은 어려움이 따른다. 본 논문에서는 대규모의 이미지 데이터베이스에서 효율적이고 신속하게 사용자가 원하는 이미지를 검색할수 있는 내용 기반 검색 시스템을 제시한다. 이를 위해서 본 논문에서는 최근 여러 장점으로 인하여 신호 분석이나 이미지 압축 분야에 많이 사용되는 웨이브릿 변환을 이용하여 이미지 데이터로부터 내용 기반 검색에 사용되는 특징 벡터를 효율적으로 추출하는 기법과 유사성 측정 방법을 제안한다. 그리고, 이러한 특징 추출방법과 유사성 측정 방법을 이용하여 내용 기반 질의 및 검색을 수행할 경우, 검색 조건을 만족하는 객체인데 실수로 검색해내지 못하는 경우인 false dismissals 이 발생하지 않음을 보인다. 또한 대규모 이미지 데이터베이스에서 신속한 내용 기반 검색을 지원하기 위하여 고차원 데이터에 대한 효율적인 색인을 제공하는 X-tree를 이용한 이미지 색인 방법을 보이며 이것이 기존의 순차 검색이나 R*-tree를 이용한 색인 방법보다 신속하게 이미지 데이터들을 검색할 수 있다는 것을 다양한 실험을 통해 보인다. 마지막으로 QBIC에서 제안한 검색 적합성 측정 방법을 이용하여 본 논문에서 제안하는 내용 기반 이미지 검색시스템의 검색 적합성을 보인다.
'Commit-bug link', the link between commit history and bug reports, is used for software maintenance and defect prediction in bug tracking systems. Previous studies have shown that the links are automatically detected based on text similarity, time interval, and keyword. Existing approaches depend on the quality of commit history and could thus miss several links. In this paper, we proposed a technique to link commit and bug report using not only messages of commit history, but also the similarity of files in the commit history coupled with bug reports. The experimental results demonstrated the applicability of the suggested approach.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.