• 제목/요약/키워드: 텍스트 기반 유사도

검색결과 196건 처리시간 0.024초

R&D과제의 기술분류를 이용한 사업간 유사도 분석 기법에 관한 연구 (A study on Similarity analysis of National R&D Programs using R&D Project's technical classification)

  • 김주호;김영자;김종배
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권3호
    • /
    • pp.317-324
    • /
    • 2012
  • 최근 R&D 투자효율성 제고를 목표로 사업 간의 유사중복 조정에 대한 중요성이 강조되고 있으나, 과제 혹은 예산요구서 내용 등을 텍스트 기반으로 비교하는 기존 유사검색 방식은 내용의 품질 편차 등으로 인해 유의미한 유사성 도출에 제한점이 있다. 이러한 텍스트 기반의 키워드 추출을 통한 유사검색 한계성을 극복하기 위한 방안으로 본 연구에서는 사업 간 유사도 분석 시 과제의 기술분류를 활용한다. 국가R&D사업 조사 분석 시 수집된 과제들의 과학기술표준분류를 추출하여 사업별 고유벡터 모형을 생성 후 이를 이용하여 코사인 기반, 유클리디안 거리기반 알고리즘을 통해 각 사업 간 유사도를 측정하였으며 기존 키워드 추출방식으로 유사도를 측정한 결과와의 비교를 통해 연구 효율성을 검증하였다.

모바일 콘텐츠 어플리케이션 디자인의 상호 텍스트성에 관한 연구 (Research on the meaning action of intertextuality in mobile contents design.)

  • 박희운
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2011년도 춘계 종합학술대회 논문집
    • /
    • pp.453-454
    • /
    • 2011
  • 다양한 스마트 모바일을 기반으로 하는 인터페이스 호환 환경의 경우 상당히 유사한 형태의 어플리케에션 아이콘 디자인이 양산되어지고 있다, 이러한 현상은 사용자가 어떤 상호텍스트성의 요소에 의해 기호의 인지 작용을 수행하며 유사한 내용과 기능을 내포한 디자인을 어떻게 서로 다르게 인지 하는지를 증명하여 향후 디지털 기기의 아이콘의 디자인에 효과적인 가이드를 제시할 수 있을 것이다. 또한 이러한 연구 결과를 토대로 영상 미디어의 통합이나 유비쿼터스 환경의 디지털 영상 기호 설계에 있어서 나타날 수 있는 미디어의 컨버전스에 의한 디지털 영상 기호 커뮤니케이션 오류를 줄이는 기초적 연구가 되고자 한다.

  • PDF

비트맵 필터를 이용한 효율적인 역 리스트 탐색 기법 (Efficient Inverted List Search Technique using Bitmap Filters)

  • 권인택;김종익
    • 정보처리학회논문지D
    • /
    • 제18D권6호
    • /
    • pp.415-422
    • /
    • 2011
  • 텍스트 데이터는 표현 방식의 차이, 타이핑 오류 등을 포함하고 있어 정확히 일치하는 검색으로는 유용한 정보를 얻기 어렵다. 따라서 유사도 기반 검색 방법이 많이 연구되고 있으며 효율적인 유사도 기반 검색을 위해 텍스트 데이터에 대한 역 리스트를 구성한다. 그리고 이를 병합하여 질의와 일정 기준 이상 유사한 데이터를 찾는다. 본 논문에서는 Suffix 필터링 과정에서 역 리스트의 탐색 비용을 줄이기 위해 역 리스트의 통계 정보인 비트맵 필터를 사용하는 기법을 제안한다. 제안하는 기법은 비트맵 필터를 사용하여 Suffix 필터링 과정에서 역 리스트의 탐색 여부를 결정하여 불필요한 역 리스트 탐색을 회피함으로써 역 리스트 병합 비용을 줄인다. 실험을 통하여 제안된 기법이 기존의 연구에서 제안된 Suffix 필터링 알고리즘보다 더 효율적임을 보인다.

생성 AI 모델을 위한 텍스트 프롬프트 추정 기반 한국화 재생성에 대한 연구 (A Study on the Reproduction of Korean Painting through Text Prompt Estimation for Generative AI Models)

  • 문성원;이지원;남도원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.432-433
    • /
    • 2023
  • 스테이블 디퓨전(Stable diffusion)과 같은 텍스트 프롬프트 입력 기반 이미지 생성 AI 기술의 발전으로 원하는 형태의 고품질 이미지를 누구나 손쉽게 생성가능할 것으로 기대하였으나 대부분의 경우 원하는 이미지를 얻기 위해서는 텍스트 프롬프트를 정교하게 조정해가며 많은 실패를 겪어야만 한다. 이러한 한계를 극복하기 위해 클립 인터로게이터(CLIP Interrogator)와 같은 유사 이미지를 재생성하기 위한 텍스트 프롬프트 추정 기술이 개발되었으며 몇몇 이미지에 대해 뛰어난 결과를 보였다. 본 논문에서는 이러한 텍스트 프롬프트 추정 기술의 활용이 한국화를 재생성할 수 있는지 실험을 통해 가능성을 확인하고 향후 한국화 재생성을 위한 연구 방향을 제안하고자 한다.

코사인 유사도를 기반의 온톨로지를 이용한 문장유사도 분석 (Sentence Similarity Analysis using Ontology Based on Cosine Similarity)

  • 황치곤;윤창표;윤대열
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.441-443
    • /
    • 2021
  • 문장 또는 텍스트 유사도란 두 가지 문장의 유사한 정도를 나타내는 척도이다. 텍스트의 유사도를 측정하는 기법으로 자카드 유사도, 코사인 유사도, 유클리디언 유사도, 맨하탄 유사도 등과 같이 있다. 현재 코사인 유사도 기법을 가장 많이 사용하고 있으나 이는 문장에서 단어의 출현 여부와 빈도수에 따른 분석이기 때문에, 의미적 관계에 대한 분석이 부족하다. 이에 우리는 온톨로지를 이용하여 단어 간의 관계를 부여하고, 두 문장에서 공통으로 포함된 단어를 추출할 때 의미적 유사성을 포함함으로써 문장의 유사도에 분석의 효율을 향상하고자 한다.

  • PDF

이미지 유사도를 이용한 와인라벨 인식 시스템 (Wine Label Recognition System using Image Similarity)

  • 정종문;양형정;김수형;이귀상;김선희
    • 한국콘텐츠학회논문지
    • /
    • 제11권5호
    • /
    • pp.125-137
    • /
    • 2011
  • 최근 휴대폰 카메라로 촬영한 영상을 입력으로 사용하는 시스템에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 와인라벨의 문자를 인식한 후, 데이터베이스내의 와인이미지들 중에서 입력 와인라벨 이미지와 유사한 순서대로 사용자에게 보여주는 시스템을 제안한다. 이미지의 유사도 계산을 위해 본 논문에서는 이미지의 각 영역별 대표색상, 텍스트 영역의 텍스트 색상과 배경색상, 그리고 특징점의 분포를 특징으로 사용한다. 이미지의 색상차를 계산하기 위해 RGB색상을 CIE-Lab색상으로 변환하여 사용하고, 특징점은 해리스코너 검출 알고리즘을 사용하여 추출한다. 각 셀의 대표 색상차와 텍스트 색상차 및 배경 색상차는 가중치를 적용하여 색상차 유사도를 계산하고 색상차 유사도와 특징점 분포 유사도를 정규화하여 최종 이미지 유사도를 구한다. 본 논문에서는 입력 이미지와 데이터베이스내의 이미지 간의 유사도를 계산하여 유사도 순으로 사용자에게 검색 결과를 보여줌으로써 검색 결과로부터 다시 최대 유사 와인라벨을 수동으로 찾는 노력을 줄일 수 있다.

뉴스 클러스터링을 위한 문장 간 상호 작용 기반 문서 쌍 유사도 측정 모델들 (Sentence Interaction-based Document Similarity Models for News Clustering)

  • 최성환;손동현;이호창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.401-407
    • /
    • 2020
  • 뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.

  • PDF

장면 텍스트 영역 추출을 위한 적응적 에지 강화 기반의 기울기 검출 및 보정 (The Slope Extraction and Compensation Based on Adaptive Edge Enhancement to Extract Scene Text Region)

  • 백재경;장재혁;서영건
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권4호
    • /
    • pp.777-785
    • /
    • 2017
  • 실세계에서 텍스트가 포함 된 장면은 텍스트를 추출하고 인식하여 많은 정보를 얻을 수 있으므로, 장면의 텍스트 영역을 추출하고 인식하는 기술들은 꾸준히 발전하고 있다. 장면에서 텍스트 영역을 추출하는 기술은 크게 텍스쳐를 기반으로 하는 방법과 연결요소방법, 그리고 이 둘을 적절히 혼합하는 방법들로 구분 할 수 있다. 텍스처를 기반으로 하는 방법은 영상의 색상, 명도 등의 정보를 이용하여 텍스트가 다른 요소와는 다른 값을 갖는다는 것을 기반으로 한다. 연결 요소 방법은 장면의 각 화소마다 인접해 있는 유사 화소를 연결 요소로 만들어 기하학적인 특성을 이용하여 판별한다. 본 논문에서는 텍스트 영역 추출의 정확도를 높이기 위해 영상의 기울기를 검출하고 보정한 후 에지를 적응적으로 변경하는 방법을 제안한다. 제안 방법은 영상의 기울기를 보정한 후 텍스트가 포함 된 정확한 영역만 추출하기 때문에 MSER보다 15%, EEMSER보다 10% 더 정확하게 영역을 얻었다.

콘텐트 기반의 이미지검색을 위한 분류기 접근방법 (Image Classification Approach for Improving CBIR System Performance)

  • 한우진;손경아
    • 한국통신학회논문지
    • /
    • 제41권7호
    • /
    • pp.816-822
    • /
    • 2016
  • 콘텐트 기반 이미지 검색은 기존의 태그 또는 레이블이 있는 텍스트 기반의 검색이 아닌 이미지의 특징을 이용하여 검색하는 방법이다. 실생활 이미지 데이터는 태그나 레이블이 달려있는 경우가 많지 않기 때문에 텍스트 기반의 검색 방법을 사용하기 힘든 경우가 있다. 또한, 기존에 주로 사용되는 이미지 특징 벡터의 유사도를 사용하여 검색하는 방법은 추출 벡터의 유사도 기준으로 사용자가 의도한 결과가 나올지 확신할 수 없다. 예를 들어 사용자가 입력한 질의 이미지와 검색된 이미지들의 종류가 일치하는지의 문제가 있다. 본 논문에서는 사용자가 질의 이미지의 클래스를 예상하고 결과도 동일한 클래스를 원한다는 가정에 착안하여 이미지 검색 엔진의 성능을 개선하였다. 기존의 유사도 기반의 검색에 머신 러닝 기법을 사용한 이미지 분류기를 적용하여 질의와 동일한 클래스의 결과를 찾는 방법을 제안하였으며, 그 성능을 20개 카테고리에 속하는 11,530개의 이미지로 구성되어 있는 PASCAL VOC 공개 데이터를 이용하여 검증하였다.

텍스트 마이닝과 네트워크 군집 분석을 활용한 한국의 데이터 관련 정책사업 분석 (Analyzing data-related policy programs in Korea using text mining and network cluster analysis)

  • 최성준;신기윤;오윤환
    • 한국산업정보학회논문지
    • /
    • 제28권6호
    • /
    • pp.63-81
    • /
    • 2023
  • 본 연구는 우리나라 데이터 관련 정책사업에 대한 텍스트 정보를 기반으로 네트워크 군집 분석을 통해 유사한 사업들을 분류하고 유형화하였다. 이를 위해 2022년에 우리나라에서 추진된 데이터 관련 재정사업 설명자료를 수집하고 사업 내용으로부터 키워드를 추출, TF-IDF로 각 사업 간 유사도를 도출하였으며, 이를 기반으로 정책사업 네트워크를 구축하였다. 이후 정책사업 네트워크의 구조적 특징을 분석하고, 네트워크 군집 분석을 통해 유사한 정책사업들을 군집화하여 유형화 하였다. 총 97개의 사업을 분석한 결과, 7개의 주요 군집이 식별되었으며, 이를 통해 비슷한 주제나 목표를 가진 사업들이 응용 분야 혹은 데이터가 활용되는 서비스 관점에서 유형화가 이루어진 것을 확인하였다. 본 연구의 결과는 현재 우리나라 데이터 관련 정책사업의 현황을 보여줌과 동시에 향후 국가데이터전략 수립 및 사업 기획에 있어서 전략적 접근을 위한 정책적 시사점을 제공하며 증거기반 정책 확립에 기여한다.