• Title/Summary/Keyword: 텍스트의 정신분석

Search Result 49, Processing Time 0.027 seconds

L'inconscient du texte et l'auto-traduction de Beckett - autour de Happy Days et de Oh les beaux jours (텍스트의 무의식과 베케트의 자기번역 - 희곡 Happy Days와 Oh les beaux jours를 중심으로)

  • 김두리
    • 한국프랑스학논집
    • /
    • v.105
    • /
    • pp.297-324
    • /
    • 2019
  • Cette étude a pour but d'analyser l'inconscient du texte de Samuel Beckett à l'approche psychanalytique autour de sa pièce anglaise Happy Days(1961) et de sa pièce française Oh les beaux jours(1963) traduite par Beckett lui-même. L'étude a pour base la citation de Rainier Grutman sur l'auto-traduction de Beckett que « son œuvre dans l'ensemble est, avec chaque part monolingue exigeant sa contrepartie en une autre langue ». Cette étude révèle le style de Beckett censé être influencé par la psychanalyse et en même temps des différences entre deux textes qui nous montreront des particularités de son auto-traduction. La scène de Happy Days est composée d'un long monologue de Winnie « enterrée jusqu'au-dessus de la taille ». Elle essaie d'enchaîner par les règles du discours à la manière de raconter un rêve. Winnie évoque deux fois un épisode de Mildred et un épisode de « Monsieur Piper… ou Cooker et la femme ». Ces deux épisodes montrent des images déformées de l'inconscient de Winnie. Le glissement de l'inconscient s'effectue aussi au niveau des signifiants. Par exemple, l'usage répétitif de l'adverbe « up » dans Happy Days et des verbes « tirer » et « lâcher » dans Oh les beaux jours montrent le désir de « flotter dans l'azur » de Winnie. Le texte révèlant l'inconscient d'une façon détournée est nettement différent dans Happy Days et Oh les beaux jours au niveau des indications scéniques, des mots, des styles des phrases, des citations des classiques. Alors que l'allusion des phrases anglaises est supprimée, Beckett rétablit cette suppression par une autre manière dans sa traduction. Par exemple à la place du mot anglais « damask » qui suggère l'influence de Till Damaskus de August Strindberg, il tente de montrer dans Oh les beaux jours le mouvement alternatif de « l'inconnu », héros de Till Damaskus : Beckett traduit la phrase anglaise « then nothing from that day forth only titbits from Reynolds' News » par la phrase française « finie fleurette, la parole est aux offres et demandes ». Sa traduction française montre bien « form is content, content is form ».

Text-Mining Analyses of News Articles on Schizophrenia (조현병 관련 주요 일간지 기사에 대한 텍스트 마이닝 분석)

  • Nam, Hee Jung;Ryu, Seunghyong
    • Korean Journal of Schizophrenia Research
    • /
    • v.23 no.2
    • /
    • pp.58-64
    • /
    • 2020
  • Objectives: In this study, we conducted an exploratory analysis of the current media trends on schizophrenia using text-mining methods. Methods: First, web-crawling techniques extracted text data from 575 news articles in 10 major newspapers between 2018 and 2019, which were selected by searching "schizophrenia" in the Naver News. We had developed document-term matrix (DTM) and/or term-document matrix (TDM) through pre-processing techniques. Through the use of DTM and TDM, frequency analysis, co-occurrence network analysis, and topic model analysis were conducted. Results: Frequency analysis showed that keywords such as "police," "mental illness," "admission," "patient," "crime," "apartment," "lethal weapon," "treatment," "Jinju," and "residents" were frequently mentioned in news articles on schizophrenia. Within the article text, many of these keywords were highly correlated with the term "schizophrenia" and were also interconnected with each other in the co-occurrence network. The latent Dirichlet allocation model presented 10 topics comprising a combination of keywords: "police-Jinju," "hospital-admission," "research-finding," "care-center," "schizophrenia-symptom," "society-issue," "family-mind," "woman-school," and "disabled-facilities." Conclusion: The results of the present study highlight that in recent years, the media has been reporting violence in patients with schizophrenia, thereby raising an important issue of hospitalization and community management of patients with schizophrenia.

An Analysis of the Discourse Topics of Users who Exhibit Symptoms of Depression on Social Media (소셜미디어를 통한 우울 경향 이용자 담론 주제 분석)

  • Seo, Harim;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.207-226
    • /
    • 2019
  • Depression is a serious psychological disease that is expected to afflict an increasing number of people. And studies on depression have been conducted in the context of social media because social media is a platform through which users often frankly express their emotions and often reveal their mental states. In this study, large amounts of Korean text were collected and analyzed to determine whether such data could be used to detect depression in users. This study analyzed data collected from Twitter users who had and did not have depressive tendencies between January 2016 and February 2019. The data for each user was separately analyzed before and after the appearance of depressive tendencies to see how their expression changed. In this study the data were analyzed through co-occurrence word analysis, topic modeling, and sentiment analysis. This study's automated data collection method enabled analyses of data collected over a relatively long period of time. Also it compared the textual characteristics of users with depressive tendencies to those without depressive tendencies.

Development of the Artwork using Music Visualization based on Sentiment Analysis of Lyrics (가사 텍스트의 감성분석에 기반 한 음악 시각화 콘텐츠 개발)

  • Kim, Hye-Ran
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.89-99
    • /
    • 2020
  • In this study, we tried to produce moving-image works through sentiment analysis of music. First, Google natural language API was used for the sentiment analysis of lyrics, then the result was applied to the image visualization rules. In prior engineering researches, text-based sentiment analysis has been conducted to understand users' emotions and attitudes by analyzing users' comments and reviews in social media. In this study, the data was used as a material for the creation of artworks so that it could be used for aesthetic expressions. From the machine's point of view, emotions are substituted with numbers, so there is a limit to normalization and standardization. Therefore, we tried to overcome these limitations by linking the results of sentiment analysis of lyrics data with the rules of formative elements in visual arts. This study aims to transform existing traditional art works such as literature, music, painting, and dance to a new form of arts based on the viewpoint of the machine, while reflecting the current era in which artificial intelligence even attempts to create artworks that are advanced mental products of human beings. In addition, it is expected that it will be expanded to an educational platform that facilitates creative activities, psychological analysis, and communication for people with developmental disabilities who have difficulty expressing emotions.

Analysis of Nursing Start-up Trends Using Text Network Analysis (텍스트 네트워크를 활용한 간호창업 연구동향 고찰)

  • Kim, Juhang
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.359-367
    • /
    • 2020
  • The purpose of this study is to explore text data of nursing start-up. 55 literatures were extracted from MEDLINE, Embase and Cochrane Library Data BASE. Text network analysis applied by using python network program. Key words with highest frequency and degree centrality were 'business', 'care', 'nursing', 'healthcare', 'service'. Keywords with highest degree centrality were 'mission', 'vision', 'team'. Based on the results nursing entrepreneurship support should be provided to develop competitive nursing services reflecting the specificity and science of nursing, to strengthen business competencies essential for nursing entrepreneurship, to expand nursing expertise and to present role models. The result will serve a basement to development systematic educational program and theory in nursing start-up.

An Analysis of Keywords Related to Neighborhood Healing Gardens Using Big Data (빅데이터를 활용한 생활밀착형 치유정원 연관키워드 분석)

  • Huang, Zhirui;Lee, Ai-Ran
    • Land and Housing Review
    • /
    • v.13 no.2
    • /
    • pp.81-90
    • /
    • 2022
  • This study is based on social needs for green healing spaces assumed to enhance mental health in a city. This study proposes development directions through the analysis of modern social recognition factors for neighborhood gardens. As a research method, web information data was collected using Textom among big data tools. Text Mining was conducted to extract elements and analyze their relationship through keyword analysis, network analysis, and cluster analysis. As a result, first, the healing space and the healing environment were creating an eco-friendly healthy environment in a space close to the neighborhood within the city. Second, neighborhood gardens included projects and activities that involved government, local administration, and citizens by linking facilities as well as living culture and urban environments. These gardens have been reinforced through green welfare and service programs. In conclusion, friendly gardens in the neighborhood for the purpose of public interest, which are beneficial to mental health, are green infrastructures as a healing environment that can produce positive effects.

A Study on the Music Therapy Management Model Based on Text Mining (텍스트 마이닝 기반의 음악치료 관리 모델에 관한 연구)

  • Park, Seong-Hyun;Kim, Jae-Woong;Kim, Dong-Hyun;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.15-20
    • /
    • 2019
  • Music therapy has shown many benefits in the treatment of disabled children and the mind. Today's music therapy system is a situation where no specific treatment system has been built. In order for the music therapist to make an accurate treatment, various music therapy cases and treatment history data must be analyzed. Although the most appropriate treatment is given to the client or patient, in reality a number of difficulties are followed due to several factors. In this paper, we propose a music therapy knowledge management model which convergence the existing therapy data and text mining technology. By using the proposed model, similar cases can be searched and accurate and effective treatment can be made for the patient or the client based on specific and reliable data related to the patient. This can be expected to bring out the original purpose of the music therapy and its effect to the maximum, and is expected to be useful for treating more patients.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

Ontology-based Anti-Spam System using Semantic Inference Rules (의미추론규칙을 이용한 온톨로지 기반의 스팸방지 시스템)

  • Heu, Chung-Hwan;Jeong, Jin-Woo;Joo, Young-Do;Lee, Dong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.325-330
    • /
    • 2008
  • 전자우편(email)은 인터넷의 급격한 보급으로 인하여 사용자들이 많이 사용하게 된 통신 메커니즘이다. 그러나 이러한 전자우편의 대중성을 상업적인 목적으로 이용한 스팸메일의 출현으로, 사용자들은 정신적 피해, 업무 방해, 메일서버의 트래픽 과부화로 인한 유지보수 비용 증가와 같은 문제점들을 접하게 되었다. 특히, 최근에는 광고성 이미지들을 첨부하는 등의 새로운 기법이 적용된 스팸메일의 발생으로 기존의 텍스트 기반의 스팸메일 필터링 기법들이 무의미하게 되었으며, 따라서 그로 인한 피해가 증가하는 추세이다. 이러한 이미지 기반의 스팸메일들의 필터링을 위하여 Support Vector Machine과 같은 기계학습 기법을 이용한 기법들이 제안되고 있으나, 여전히 그 성능은 만족스럽지 못하다. 본 논문은 전자우편으로부터 텍스트 및 시각적 의미를 분석하여 전자우편 온톨로지에 기술하고 스팸메일 판단을 위한 의미추론규칙을 적용함으로써 광고성 이미지가 첨부되어 있는 스팸메일을 효과적으로 필터링 하기 위한 시스템을 제안한다.

  • PDF

Recent Domestic Research Trend Over Startups: Focusing on the Social Network Analysis of Research Variables (스타트업 관련 최근 국내 연구 동향: 연구 변수들에 대한 소셜 네트워크 분석을 중심으로)

  • Kil, ChangMin;Yang, DongWoo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.2
    • /
    • pp.81-97
    • /
    • 2022
  • This paper's purpose is to get hold of the recent research trend by analyzing the variables uesd in startups related papers. The startups related papers in this paper are the papers which include 'startups' in the title of the registered papers from the year 2013 to the year 2020. This study's analysis methods are text-mining of all variables and text-network analysis of affected variables. Visualizing tool for network analysis is Gephi. The result of variables' analysis is as follows. First, independent variables consist mainly of variables about startups' internal factors and outside environment, but due to startups' features like early stage company's features, innovative features, most of variables are about enterprise internal competitiveness, marketing 4P strategy, entrepreneurship, coopreation method, transformational leadership, enterprise features, lean startup strategy, enterprise internal communication, value orientation, task conflict, relationship conflict, knowledge sharing, etc. Second, dependent variables are mainly about outcome, and are classified into financial performance and non-financial performance by overall concept. In other words, startups related papers have higher interest in non-financial performance, like management performance, team performance, SCM performance as well as financial performance like sales quantity owing to startups' immaturity in getting good financial performance. Through this study we can find out as follows. Although there are not many officially registered papers dealing with startups, those papers include various themes about stratups. For example, there are trendy themes like lean startups strategy, crowdfunding, influencer and accelerator, etc.