• 제목/요약/키워드: 텍스트마이닝분석

검색결과 1,003건 처리시간 0.035초

연구 동향 분석을 위한 텍스트 마이닝 기반 GPT 활용 기법 (Text mining based GPT utilization technique for research trend analysis)

  • 하정훈;최봉준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.369-370
    • /
    • 2023
  • 새로운 연구를 시작하기 위해서는 과거의 연구 동향을 분석해야 한다. 이를 위해 많은 양의 과거 연구 데이터를 조사해야 하는데, 모든 데이터를 직접 분류하는 방법은 많은 시간과 노력이 필요하기 때문에 비효율적이며, 텍스트 마이닝 기법을 활용한 키워드분석만으로는 연구 동향을 이해하기에 어려움이 존재한다. 이러한 전통적인 키워드 추출 방법의 한계점을 보완하기 위해 본 논문에서는 텍스트 마이닝 기반 GPT 활용 기법을 제안한다. 본 연구에서는 특정 도메인에 대해 텍스트 마이닝 기법을 활용하여 키워드를 추출하고, 이러한 키워드를 해당 도메인의 데이터로 미세 조정(fine-tuning)된 GPT의 입력으로 사용한다. GPT 결과로 생성된 문장을 텍스트 마이닝으로 나온 결과와 비교 분석한다. 이를 통해 연구 분야의 동향 분석을 보다 쉽게 할 수 있을 것으로 기대된다.

  • PDF

텍스트 마이닝을 활용한 대선 관련 SNS 분석 (SNS Analysis Related to Presidential Election Using Text Mining)

  • 권영우;정덕길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.361-363
    • /
    • 2017
  • 최근 소셜 미디어의 이용률이 폭발적으로 증가함에 따라, 방대한 데이터가 네트워크로 쏟아져 나오고 있다. 이들 데이터는 기존의 정형 데이터뿐만 아니라 이미지, 동영상 등의 비정형 데이터가 있으며, 이들을 포괄하여 빅데이터라고 불린다. 이러한 빅데이터는 오피니언 마이닝, 테스트 마이닝 등의 기술적인 분석 기법과 빅데이터 요약 및 효과적인 표현방법에 대한 시각화 기법에 대하여 활발한 연구가 이루어지고 있다. 이 논문은 인기 있는 사회연결망 서비스인 Twitter의 트윗을 수집하고, 빅데이터 분석 기법인 텍스트 마이닝을 활용하여 2017년 대선에 대하여 분석하였다. 또한 분석된 자료의 효과적인 전달을 위해 워드 클라우드 진행하였다. 이 논문을 위하여 인기 있는 SNS인 Twitter의 최근 7일간 트윗(tweet)을 수집하고 분석하였다.

  • PDF

빅데이터 환경에서 텍스트마이닝 기법을 활용한 공공문서 분류체계의 적용사례 연구 (Case Study on Public Document Classification System That Utilizes Text-Mining Technique in BigData Environment)

  • 심장섭;이강욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.1085-1089
    • /
    • 2015
  • 과거의 텍스트마이닝기법은 텍스트 자체의 복잡성과 텍스트 내에 산재한 변수의 자유도 때문에 분석 알고리즘을 구현하는데 어려움이 있었다. 의미 있는 정보를 얻기 위하여 어렵게 알고리즘을 구현했다고 하더라도, 기계적으로 텍스트 분석에 소요되는 시간이 텍스트를 사람이 직접 읽어 분석 하는 것보다 많은 시간이 요구 되었다. 그러나 최근 하드웨어와 분석 알고리즘의 발전과 함께 빅데이터라는 기술이 등장하였으며, 앞에서 설명한 제약사항을 극복할 수 있게 되었고, 텍스트마이닝을 통한 분석이 현실세계에서 그 가치를 충분히 인정받고 있다. 만약, 텍스트의 탐색 수준에서 벗어나 마이닝을 통하여 분석이 가능하다면 텍스트 분석에 소비되는 인적, 물적 자원의 비용을 절감할 수 있기 때문에 공공분야에서 절실히 요구되는 창조적인 일에 더 많은 자원을 효과적으로 활용할 수 있을 것이다. 이에 본 논문에서는 인적 자원이 수작업으로 하는 공공분야 문서 분류의 결과값과 빅데이터 환경에서 텍스트마이닝기반의 문서내 단어 빈도수(TF-IDF)와 문서간 코사인 유사도(Cosine Similarity)를 활용한 공공분야 문서분류의 결과값을 비교하여 평가한다.

  • PDF

텍스트 마이닝을 통한 해외건설공사 입찰정보 분석 - 해외건설공사의 입찰자 질의(Bidder Inquiry) 정보를 대상으로 - (Construction Bid Data Analysis for Overseas Projects Based on Text Mining - Focusing on Overseas Construction Project's Bidder Inquiry)

  • 이지희;이준성;손정욱
    • 한국건설관리학회논문집
    • /
    • 제17권5호
    • /
    • pp.89-96
    • /
    • 2016
  • 건설 프로젝트에서 생산되는 대부분의 데이터는 텍스트 기반의 비정형 데이터이다. 계약서, 시방서, RFi 등 수많은 텍스트 문서들을 효과적으로 분석하기 위해서는 텍스트 마이닝과 같은 비정형 텍스트 데이터 분석 방법이 필요하다. 이에 본 연구에서는 과거에 수행되었던 해외건설공사 프로젝트의 입찰 관련 문서들을 대상으로 텍스트 마이닝을 실시하였으며, 그 결과 빈출단어의 유형, 단어들 간의 연관관계, 문서들의 토픽 유형들에 대한 파악이 가능하였다. 본 연구는 텍스트 마이닝을 활용한 해외건설공사 입찰 정보 분석을 통해 비정형 텍스트 데이터를 효과적으로 분석할 수 있는 방안을 제시하였다는 점에서 의의가 있으며, 향후 관련 분야 연구를 확장시킬 수 있는 기반을 마련할 수 있을 것이라 기대한다.

텍스트 마이닝을 위한 그래프 기반 텍스트 표현 모델의 연구 동향 (A Study on Research Trends of Graph-Based Text Representations for Text Mining)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.37-47
    • /
    • 2013
  • 텍스트 마이닝은 비정형화된 텍스트를 분석하여 그 안에 내재된 패턴, 추세, 분포 등의 고급정보들을 추출하는 분야이다. 텍스트 마이닝은 기본적으로 비정형 데이터를 가정하므로 텍스트를 단순화된 모델로 표현하는 것이 필요하다. 현재까지 가장 많이 사용되고 있는 모델은 텍스트를 단순한 단어들의 집합으로 표현한 벡터공간 모델이다. 그러나 최근 들어 단어들의 의미적 관계까지 표현하기 위해 그래프를 이용한 텍스트 표현 모델을 많이 사용하고 있다. 본 논문에서는 텍스트 마이닝을 위한 기존의 연구 중에서 그래프에 기반한 텍스트 표현 모델의 방법들과 그들의 특징들을 기술한다. 또한 그래프 기반 텍스트 마이닝의 향후 발전방향에 대해서도 논한다.

웹 컨텐츠의 분류를 위한 텍스트마이닝과 데이터마이닝의 통합 방법 연구 (Interplay of Text Mining and Data Mining for Classifying Web Contents)

  • 최윤정;박승수
    • 인지과학
    • /
    • 제13권3호
    • /
    • pp.33-46
    • /
    • 2002
  • 최근 인터넷에는 기존의 데이터베이스 형태가 아닌 일정한 구조를 가지지 않았지만 상당한 잠재적 가치를 지니고 있는 텍스트 데이터들이 많이 생성되고 있다. 고객창구로서 활용되는 게시판이나 이메일, 검색엔진이 초기 수집한 데이터 둥은 이러한 비구조적 데이터의 좋은 예이다. 이러한 텍스트 문서의 분류를 위하여 각종 텍스트마이닝 도구가 개발되고 있으나, 이들은 대개 단순한 통계적 방법에 기반하고 있기 때문에 정확성이 떨어지고 좀 더 다양한 데이터마이닝 기법을 활용할 수 있는 방법이 요구되고 있다. 그러나, 정형화된 입력 데이터를 요구하는 데이터마이닝 기법을 텍스트에 직접 적용하기에는 많은 어려움이 있다. 본 연구에서는 이러한 문제를 해결하기 위하여 전처리 과정에서 텍스트마이닝을 수행하고 정제된 중간결과를 데이터마이닝으로 처리하여 텍스트마이닝에 피드백 시켜 정확성을 높이는 방법을 제안하고 구현하여 보았다. 그리고, 그 타당성을 검증하기 위하여 유해사이트의 웹 컨텐츠를 분류해내는 작업에 적용하여 보고 그 결과를 분석하여 보았다. 분석 결과, 제안방법은 기존의 텍스트마이닝만을 적용할 때에 비하여 오류율을 현저하게 줄일 수 있었다.

  • PDF

환경 빅데이터 이슈 분석을 위한 용어 가중치 기법 비교 (Comparison of Term-Weighting Schemes for Environmental Big Data Analysis)

  • 김정진;정한석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.236-236
    • /
    • 2021
  • 최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.

  • PDF

웹 캐스트와 텍스트 마이닝을 이용한 축구 경기의 심층 분석 (In-depth Analysis of Soccer Game via Webcast and Text Mining)

  • 정호석;이종욱;유재학;이한성;박대희
    • 한국콘텐츠학회논문지
    • /
    • 제11권10호
    • /
    • pp.59-68
    • /
    • 2011
  • 축구 경기를 분석하고 이를 팀 전략 수립에 활용하는 축구 분석관의 역할이 강조됨에 따라, 방송용 축구 경기에서 주요 이벤트의 탐지와 같은 절차적 기능 이상의 고수준의 해석 방법들이 요구되고 있다. 본 논문에서는 인터넷 기반의 텍스트 방송인 축구 웹 캐스트에서 실시간으로 제공하는 텍스트 정보를 기반으로 텍스트 마이닝을 이용한 축구 경기의 전략 수립이 가능한 고수준의 해석 기법을 제안한다. 제안하는 해석기법은 축구 웹 캐스트의 텍스트 정보와 도메인 지식을 기반으로 축구 경기의 다양한 속성, 동작 그리고 이벤트 등 메타데이터를 추출하고, 인덱싱하고, 텍스트 마이닝의 다양한 해석 기법인 연관 규칙 마이닝, 성장도 분석, 그리고 패스파인더 네트워크 분석 기법 등을 사용함으로써 유용한 지식을 추출한다. 실제 2010년 월드컵의 스페인 팀 경기들을 중계한 웹 캐스트의 텍스트 정보를 대상으로 제안된 기법의 타당성을 실험적으로 검증한다.

텍스트 마이닝을 활용한 세대별 키워드 빅데이터 분석: 네이트판 10대·20대·30대 게시판을 중심으로 (Bigdata Analysis on Keyword by Generations through Text Mining: Focused on Board of Nate Pann in 10s, 20s, 30s)

  • 정백;배성원;황보유정
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.513-516
    • /
    • 2022
  • 본 논문에서는 텍스트 마이닝 기법을 이용하여 MZ 세대를 이해하는 키워드를 도출하고자 한다. MZ 세대의 비중이 높아지면서, MZ 세대를 분석하려고 하는 많은 연구들이 수행되고 있다. 이에 본 연구에서는 MZ 세대를 이해하기 위하여 네이트 판의 연령별 게시판 크롤링을 통해 빅데이터를 수집하였다. 그리고 텍스트 마이닝 기법을 활용하여 10대, 20대, 30대의 각각의 키워드를 도출할 수 있었다. 본 논문에서 도출된 키워드는 이는 MZ 세대를 이해하는데 중요한 키워드로 볼 수 있을 것이다. 향후 연구로는 MZ 세대와 기성 세대를 비교하기 위하여 추가 크롤링을 통해 세대 간 비교 연구를 수행하고자 한다.

  • PDF

사회과학을 위한 양적 텍스트 마이닝: 이주, 이민 키워드 논문 및 언론기사 분석 (Quantitative Text Mining for Social Science: Analysis of Immigrant in the Articles)

  • 이수정;최두영
    • 한국콘텐츠학회논문지
    • /
    • 제20권5호
    • /
    • pp.118-127
    • /
    • 2020
  • 본 연구는 최근 사회과학에서 실시되고 있는 양적 텍스트 분석의 흐름과 분석을 실시함에 있어 주의해야 할 사례를 포함하여 기술 하였다. 특히, 2017년부터 2019년까지 3년간 학술지와 언론에서 사용된 "이주", "이민" 키워드를 기반으로 사례연구를 실시하였다. 이를 위해 최근 사회과학분야에서 주목 받는 자연어 처리 기술(NLP)를 이용한 양적 텍스트 분석 (Quantitate text analysis)을 사용하였다. 양적 텍스트 분석은 문서를 구조적 데이터로 변환하여, 가설의 발견 및 검증을 실시하는 데이터 과학의 영역으로, 데이터의 모델링 및 가시화 등이 가능하고, 특히 비구조화 된 데이터를 구조화할 수 있다는 점에서 사회과학 분야에 많이 도입하였다. 따라서 본 연구는 양적 텍스트 분석을 통해 "이주", "이민"을 키워드로 한 연구 및 언론 기사에 대한 통계 분석을 실시하고 도출된 결론에 대한 해석을 실시하였다.