• Title/Summary/Keyword: 테일러-프라우드만 유동

Search Result 3, Processing Time 0.016 seconds

Taylor-Proudman Column Flows in a Compressible Rotating Fluid (압축성 회전 유동에서의 비점성 Taylor-Proudman column 유동)

  • Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.27-32
    • /
    • 2001
  • A study has been made of the condition to maintaining Taylor-Proudman column flows in a compressible rotating fluid, which is driven by small mechanical and/or thermal perturbations imposing on the container wall in the basic state of isothermal rigid body rotation. The Rossby and system Ekman numbers are assumed to be very small. The Taylor-Proudman column flow can be produced when energy parameter, e, becomes constant on the whole flow region. Energy balance concept, related to energy parameter, and its physical interpretation are given with comprehensive discussions.

  • PDF

Energy transport analysis for the Taylor-Proudman column in la rapidly-rotating compressible fluid (압축성 회전 유동에서의 Taylor-Proudman 기둥의 에너지 전달에 관한 해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.329-332
    • /
    • 2002
  • A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy content.

  • PDF

An asymptotic analysis of the Taylor-Proudman flow in a rapidly-rotating compressible fluid (압축성 회전유체에서 발생하는 Taylor-Proudman 유동에 대한 점근해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.341-344
    • /
    • 2002
  • A matched asymptotic analysis is conducted for a compressible rotating flow in a cylindrical container when a mechanical and/or a thermal disturbance is imposed on the wall. The system Ekman number is assumed to be very small. The conditions for the Taylor-Proudman column in the interior, which were also given in the companion paper Park & Hyun, 2002) by means of the energy balancing analysis, have been re-derived. The concept of the variable, the energy content $e[{\equiv}T+2 {\alpha}^2 {\gamma}{\nu}]$, is reformulated, and its effectiveness in characterizing the energy transport mechanism is delineated. It is seen that, under the condition of the Taylor-Proudman column, numerous admissible theoretical solutions for interior flow exist with an associated wail boundary condition. Some canonical examples are illustrated with comprehensive physical descriptions. The differential heating problem on the top and bottom endwall disks is revisited by using the concept of the energy content. The results are shown to be in line with the previous findings.

  • PDF