• Title/Summary/Keyword: 테스트 기법

Search Result 1,162, Processing Time 0.023 seconds

A Study of the Information Structuring of an Integrated Navigation System (INS) Based on User Experience using a Card Sorting Test (카드 소팅 분석을 통한 사용자 경험 기반의 통합항해시스템 정보 구성에 관한 연구)

  • Bora, Kim;Yun-sok, Lee;Young-Joong Ahn
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.160-167
    • /
    • 2023
  • An INS is a composite navigation system providing "added value" so defined if work stations provide Multi-Function Displays(MFDs) integrating information and functions for navigational tasks. Even though the minimum requirements for an INS are defined by IMO performance standards, a generic list of the devices and functions that constitute an INS does not exist, so the configuration of the INS is different for each manufacturer, and guidelines based on users' perspectives are also insufficient. This study was conducted to enhance the usability of the INS by analyzing the information required by users according to the ship's operating status and tasks and effectively structuring it in the MFD of the INS. By analyzing INS-related international standards and manufacturers' component equipment lists, mandatory navigation information was selected and card sorting tests were conducted on ship operators with experience in using MFDs to group the information required for each INS task. The results of the study can serve as a basic guideline for manufacturers to structure information based on users' experience when designing products.

CNN Classifier Based Energy Monitoring System for Production Tracking of Sewing Process Line (봉제공정라인 생산 추적을 위한 CNN분류기 기반 에너지 모니터링 시스템)

  • Kim, Thomas J.Y.;Kim, Hyungjung;Jung, Woo-Kyun;Lee, Jae Won;Park, Young Chul;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.70-81
    • /
    • 2019
  • The garment industry is one of the most labor-intensive manufacturing industries, with its sewing process relying almost entirely on manual labor. Its costs highly depend on the efficiency of this production line and thus is crucial to determine the production rate in real-time for line balancing. However, current production tracking methods are costly and make it difficult for many Small and Medium-sized Enterprises (SMEs) to implement them. As a result, their reliance on manual counting of finished products is both time consuming and prone to error, leading to high manufacturing costs and inefficiencies. In this paper, a production tracking system that uses the sewing machines' energy consumption data to track and count the total number of sewing tasks completed through Convolutional Neural Network (CNN) classifiers is proposed. This system was tested on two target sewing tasks, with a resulting maximum classification accuracy of 98.6%; all sewing tasks were detected. In the developing countries, the garment sewing industry is a very important industry, but the use of a lot of capital is very limited, such as applying expensive high technology to solve the above problem. Applied with the appropriate technology, this system is expected to be of great help to the garment industry in developing countries.

Implementation of AI-based Object Recognition Model for Improving Driving Safety of Electric Mobility Aids (객체 인식 모델과 지면 투영기법을 활용한 영상 내 다중 객체의 위치 보정 알고리즘 구현)

  • Dong-Seok Park;Sun-Gi Hong;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.119-125
    • /
    • 2023
  • In this study, we photograph driving obstacle objects such as crosswalks, side spheres, manholes, braille blocks, partial ramps, temporary safety barriers, stairs, and inclined curb that hinder or cause inconvenience to the movement of the vulnerable using electric mobility aids. We develop an optimal AI model that classifies photographed objects and automatically recognizes them, and implement an algorithm that can efficiently determine obstacles in front of electric mobility aids. In order to enable object detection to be AI learning with high probability, the labeling form is labeled as a polygon form when building a dataset. It was developed using a Mask R-CNN model in Detectron2 framework that can detect objects labeled in the form of polygons. Image acquisition was conducted by dividing it into two groups: the general public and the transportation weak, and image information obtained in two areas of the test bed was secured. As for the parameter setting of the Mask R-CNN learning result, it was confirmed that the model learned with IMAGES_PER_BATCH: 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION: 10,000 showed the highest performance at 68.532, so that the user can quickly and accurately recognize driving risks and obstacles.

A Study on the Drug Classification Using Machine Learning Techniques (머신러닝 기법을 이용한 약물 분류 방법 연구)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.8-16
    • /
    • 2024
  • This paper shows the system of drug classification, the goal of this is to foretell the apt drug for the patients based on their demographic and physiological traits. The dataset consists of various attributes like Age, Sex, BP (Blood Pressure), Cholesterol Level, and Na_to_K (Sodium to Potassium ratio), with the objective to determine the kind of drug being given. The models used in this paper are K-Nearest Neighbors (KNN), Logistic Regression and Random Forest. Further to fine-tune hyper parameters using 5-fold cross-validation, GridSearchCV was used and each model was trained and tested on the dataset. To assess the performance of each model both with and without hyper parameter tuning evaluation metrics like accuracy, confusion matrices, and classification reports were used and the accuracy of the models without GridSearchCV was 0.7, 0.875, 0.975 and with GridSearchCV was 0.75, 1.0, 0.975. According to GridSearchCV Logistic Regression is the most suitable model for drug classification among the three-model used followed by the K-Nearest Neighbors. Also, Na_to_K is an essential feature in predicting the outcome.

A Technique for Selecting Quadrature Points for Dimension Reduction Method to Improve Efficiency in Reliability-based Design Optimization (신뢰성 기반 최적설계의 효율성 향상을 위한 차원감소법의 적분직교점 선정 기법)

  • Ha-Yeong Kim;Hyunkyoo Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.217-224
    • /
    • 2024
  • This paper proposes an efficient dimension reduction method (DRM) that considers the nonlinearity of the performance functions in reliability-based design optimization (RBDO). The dimension reduction method evaluates the reliability more accurately than the first-order reliability method (FORM) using integration quadrature points and weights. However, its efficiency is hindered as the number of quadrature points increases owing to the need for an additional evaluation of the performance function. In this study, we assessed the nonlinearity of the performance function in RBDO and proposed criteria for determining the number of quadrature points based on the degree of nonlinearity. This approach suggests adjusting the number of quadrature points during each iteration of the RBDO process while maintaining the accuracy of theDRM while improving the computational efficiency. The nonlinearity of the performance function was evaluated using the angle between the vectors used in the maximum probable target point (MPTP) search. Numerical tests were conducted to determine the appropriate number of quadrature points according to the degree of nonlinearity. Through a 2D numerical example, it is confirmed that the proposed method improves the efficiency while maintaining the accuracy of the dimension reduction method or Monte Carlo Simulation (MCS).

A Study on the Extraction of Psychological Distance Embedded in Company's SNS Messages Using Machine Learning (머신 러닝을 활용한 회사 SNS 메시지에 내포된 심리적 거리 추출 연구)

  • Seongwon Lee;Jin Hyuk Kim
    • Information Systems Review
    • /
    • v.21 no.1
    • /
    • pp.23-38
    • /
    • 2019
  • The social network service (SNS) is one of the important marketing channels, so many companies actively exploit SNSs by posting SNS messages with appropriate content and style for their customers. In this paper, we focused on the psychological distances embedded in the SNS messages and developed a method to measure the psychological distance in SNS message by mixing a traditional content analysis, natural language processing (NLP), and machine learning. Through a traditional content analysis by human coding, the psychological distance was extracted from the SNS message, and these coding results were used for input data for NLP and machine learning. With NLP, word embedding was executed and Bag of Word was created. The Support Vector Machine, one of machine learning techniques was performed to train and test the psychological distance in SNS message. As a result, sensitivity and precision of SVM prediction were significantly low because of the extreme skewness of dataset. We improved the performance of SVM by balancing the ratio of data by upsampling technique and using data coded with the same value in first content analysis. All performance index was more than 70%, which showed that psychological distance can be measured well.

A Development of Flood Mapping Accelerator Based on HEC-softwares (HEC 소프트웨어 기반 홍수범람지도 엑셀러레이터 개발)

  • Kim, JongChun;Hwang, Seokhwan;Jeong, Jongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.173-182
    • /
    • 2024
  • In recent, there has been a trend toward primarily utilizing data-driven models employing artificial intelligence technologies, such as machine learning, for flood prediction. These data-driven models offer the advantage of utilizing pre-training results, significantly reducing the required simulation time. However, it remains that a considerable amount of flood data is necessary for the pre-training in data-driven models, while the available observed data for application is often insufficient. As an alternative, validated simulation results from physically-based models are being employed as pre-training data alongside observed data. In this context, we developed a flood mapping accelerator to generate flood maps for pre-training. The proposed accelerator automates the entire process of flood mapping, i.e., estimating flood discharge using HEC-1, calculating water surface levels using HEC-RAS, simulating channel overflow and generating flood maps using RAS Mapper. With the accelerator, users can easily prepare a database for pre-training of data-driven models from hundreds to tens of thousands of rainfall scenarios. It includes various convenient menus containing a Graphic User Interface(GUI), and its practical applicability has been validated across 26 test-beds.

The Advancement of Underwriting Skill by Selective Risk Acceptance (보험Risk 세분화를 통한 언더라이팅 기법 선진화 방안)

  • Lee, Chan-Hee
    • The Journal of the Korean life insurance medical association
    • /
    • v.24
    • /
    • pp.49-78
    • /
    • 2005
  • Ⅰ. 연구(硏究) 배경(背景) 및 목적(目的) o 우리나라 보험시장의 세대가입율은 86%로 보험시장 성숙기에 진입하였으며 기존의 전통적인 전업채널에서 방카슈랑스의 도입, 온라인전문보험사의 출현, TM 영업의 성장세 等멀티채널로 진행되고 있음 o LTC(장기간병), CI(치명적질환), 실손의료보험 등(等)선 진형 건강상품의 잇따른 출시로 보험리스크 관리측면에서 언더라이팅의 대비가 절실한 시점임 o 상품과 마케팅 等언더라이팅 측면에서 매우 밀접한 영역의 변화에 발맞추어 언더라이팅의 인수기법의 선진화가 시급히 요구되는 상황하에서 위험을 적절히 분류하고 평가하는 선진적 언더라이팅 기법 구축이 필수 적임 o 궁극적으로 고객의 다양한 보장니드 충족과 상품, 마케팅, 언더라이팅의 경쟁력 강화를 통한 보험사의 종합이익 극대화에 기여할 수 있는 방안을 모색하고자 함 Ⅱ. 선진보험시장(先進保險市場)Risk 세분화사례(細分化事例) 1. 환경적위험(環境的危險)에 따른 보험료(保險料) 차등(差等) (1) 위험직업 보험료 할증 o 미국, 유럽등(等) 대부분의 선진시장에서는 가입당시 피보험자의 직업위험도에 따라 보험료를 차등 적용중(中)임 o 가입하는 보장급부에 따라 직업 분류방법 및 할증방식도 상이하며 일반사망과 재해사망,납입면제, DI에 대해서 별도의 방법을 사용함 o 할증적용은 표준위험율의 일정배수를 적용하여 할증 보험료를 산출하거나, 가입금액당 일정한 추가보험료를 적용하고 있음 - 광부의 경우 재해사망 가입시 표준위험율의 300% 적용하며, 일반사망 가입시 $1,000당 $2.95 할증보험료 부가 (2) 위험취미 보험료 할증 o 취미와 관련 사고의 지속적 다발로 취미활동도 위험요소로 인식되어 보험료를 차등 적용중(中)임 o 할증보험료는 보험가입금액당 일정비율로 부가(가입 금액과 무관)하며, 신종레포츠 등(等)일부 위험취미는 통계의 부족으로 언더라이터가 할증율 결정하여 적용함 - 패러글라이딩 년(年)$26{\sim}50$회(回) 취미생활의 경우 가입금액 $1,000당 재해사망 $2, DI보험 8$ 할증보험료 부가 o 보험료 할증과는 별도로 위험취미에 대한 부담보를 적용함. 위험취미 활동으로 인한 보험사고 발생시 사망을 포함한 모든 급부에 대한 보장을 부(不)담보로 인수함. (3) 위험지역 거주/ 여행 보험료 할증 o 피보험자가 거주하고 있는 특정국가의 임시 혹은 영구적 거주시 기후위험, 거주지역의 위생과 의료수준, 여행위험, 전쟁과 폭동위험 등(等)을 고려하여 평가 o 일반사망, 재해사망 등(等)보장급부별로 할증보험료 부가 또는 거절 o 할증보험료는 보험全기간에 대해 동일하게 적용 - 러시아의 경우 가입금액 $1,000당 일반사망은 2$의 할증보험료 부가, 재해사망은 거절 (4) 기타 위험도에 대한 보험료 차등 o 비행관련 위험은 세가지로 분류(항공운송기, 개인비행, 군사비행), 청약서, 추가질문서, 진단서, 비행이력 정보를 바탕으로 할증보험료를 부가함 - 농약살포비행기조종사의 경우 가입금액 $1,000당 일반사망 6$의 할증보험료 부가, 재해사망은 거절 o 미국, 일본등(等)서는 교통사고나 교통위반 관련 기록을 활용하여 무(無)사고운전자에 대해 보험료 할인(우량체 위험요소로 활용) 2. 신체적위험도(身體的危險度)에 따른 보험료차등(保險料差等) (1) 표준미달체 보험료 할증 1) 총위험지수 500(초과위험지수 400)까지 인수 o 300이하는 25점단위, 300점 초과는 50점 단위로 13단계로 구분하여 할증보험료를 적용중(中)임 2) 삭감법과 할증법을 동시 적용 o 보험금 삭감부분만큼 할증보험료가 감소하는 효과가 있어 청약자에게 선택의 기회를 제공할수 있으며 고(高)위험 피보험자에게 유용함 3) 특정암에 대한 기왕력자에 대해 단기(Temporary)할증 적용 o 질병성향에 따라 가입후 $1{\sim}5$년간 할증보험료를 부가하고 보험료 할증 기간이 경과한 후에는 표준체보험료를 부가함 4) 할증보험료 반환옵션(Return of the extra premium)의 적용 o 보험계약이 유지중(中)이며, 일정기간 생존시 할증보험료가 반환됨 (2) 표준미달체 급부증액(Enhanced annuity) o 영국에서는 표준미달체를 대상으로 연금급부를 증가시킨 증액형 연금(Enhanced annuity) 상품을 개발 판매중(中)임 o 흡연, 직업, 병력 등(等)다양한 신체적, 환경적 위험도에 따라 표준체에 비해 증액연금을 차등 지급함 (3) 우량 피보험체 가격 세분화 o 미국시장에서는 $8{\sim}14$개 의적, 비(非)의적 위험요소에 대한 평가기준에 따라 표준체를 최대 8개 Class로 분류하여 할인보험료를 차등 적용 - 기왕력, 혈압, 가족력, 흡연, BMI, 콜레스테롤, 운전, 위험취미, 거주지, 비행력, 음주/마약 등(等) o 할인율은 회사, Class, 가입기준에 따라 상이(최대75%)하며, 가입연령은 최저 $16{\sim}20$세, 최대 $65{\sim}75$세, 최저보험금액은 10만달러(HIV검사가 필요한 최저 금액) o 일본시장에서는 $3{\sim}4$개 위험요소에 따라 $3{\sim}4$개 Class로 분류 우량체 할인중(中)임 o 유럽시장에서는 영국 등(等)일부시장에서만 비(非)흡연할인 또는 우량체할인 적용 Ⅲ. 국내보험시장(國內保險市場) 현황(現況)및 문제점(問題點) 1. 환경적위험도(環境的危險度)에 따른 가입한도제한(加入限度制限) (1) 위험직업 보험가입 제한 o 업계공동의 직업별 표준위험등급에 따라 각 보험사 자체적으로 위험등급별 가입한도를 설정 운영중(中)임. 비(非)위험직과의 형평성, 고(高)위험직업 보장 한계, 수익구조 불안정화 등(等)문제점을 내포하고 있음 - 광부의 경우 위험1급 적용으로 사망 최대 1억(億), 입원 1일(日) 2만원까지 제한 o 금융감독원이 2002년(年)7월(月)위험등급별 위험지수를 참조 위험율로 인가하였으나, 비위험직은 70%, 위험직은 200% 수준으로 산정되어 현실적 적용이 어려움 (2) 위험취미 보험가입 제한 o 해당취미의 직업종사자에 준(準)하여 직업위험등급을 적용하여 가입 한도를 제한하고 있음. 추가질문서를 활용하여 자격증 유무, 동호회 가입등(等)에 대한 세부정보를 입수하지 않음 - 패러글라이딩의 경우 위험2급을 적용, 사망보장 최대 2 억(億)까지 제한 (3) 거주지역/ 해외여행 보험가입 제한 o 각(各)보험사별로 지역적 특성상 사고재해 다발 지역에 대해 보험가입을 제한하고 있음 - 강원, 충청 일부지역 상해보험 가입불가 - 전북, 태백 일부지역 입원급여금 1일(日)2만원이내 o 해외여행을 포함한 해외체류에 대해서는 일정한 가입 요건을 정하여 운영중(中)이며, 가입한도 설정 보험가입을 제한하거나 재해집중보장 상품에 대해 거절함 - 러시아의 경우 단기체류는 위험1급 및 상해보험 가입 불가, 장기 체류는 거절처리함 2. 신체적위험도(身體的危險度)에 따른 인수차별화(引受差別化) (1) 표준미달체 인수방법 o 체증성, 항상성 위험에 대한 초과위험지수를 보험금삭감법으로 전환 사망보험에 적용(최대 5년(年))하여 5년(年)이후 보험 Risk노출 심각 o 보험료 할증은 일부 회사에서 주(主)보험 중심으로 사용중(中)이며, 총위험지수 300(8단계)까지 인수 - 주(主)보험 할증시 특약은 가입 불가하며, 암 기왕력자는 대부분 거절 o 신체부위 39가지, 질병 5가지에 대해 부담보 적용(입원, 수술 등(等)생존급부에 부담보) (2) 비(非)흡연/ 우량체 보험료 할인 o 1999년(年)최초 도입 이래 $3{\sim}4$개의 위험요소로 1개 Class 운영중(中)임 S생보사의 경우 비(非)흡연우량체, 비(非)흡연표준체의 2개 Class 운영 o 보험료 할인율은 회사, 상품에 따라 상이하며 최대 22%(영업보험료기준)임. 흡연여부는 뇨스틱을 활용 코티닌테스트를 실시함 o 우량체 판매는 신계약의 $2{\sim}15%$수준(회사의 정책에 따라 상이) Ⅳ. 언더라이팅 기법(技法) 선진화(先進化) 방안(方案) 1. 직업위험도별 보험료 차등 적용 o 생 손보 직업위험등급 일원화와 연계하여 3개등급으로 위험지수개편, 비위험직 기준으로 보험요율 차별적용 2. 위험취미에 대한 부담보 적용 o 해당취미를 원인으로 보험사고(사망포함) 발생시 부담보 제도 도입 3. 표준미달체 인수기법 선진화를 통한 인수범위 대폭 확대 o 보험료 할증법 적용 확대를 통한 Risk 헷지로 총위험지수 $300{\rightarrow}500$으로 확대(거절건 최소화) 4. 보험료 할증법 보험금 삭감 병행 적용 o 삭감기간을 적용한 보험료 할증방식 개발, 고객에게 선택권 제공 5. 기한부 보험료할증 부가 o 위암, 갑상선암 등(等)특정암의 성향에 따라 위험도가 높은 가입초기에 평준할증보험료를 적용하여 인수 6. 보험료 할증법 부가특약 확대 적용, 부담보 병행 사용 o 정기특약 등(等)사망관련 특약에 할증법 확대, 생존급부 특약은 부담보 7. 표준체 고객 세분화 확대 o 콜레스테롤, HDL 등(等)위험평가요소 확대를 통한 Class 세분화 Ⅴ. 기대효과(期待效果) 1. 고(高)위험직종사자, 위험취미자, 표준미달체에 대한 보험가입 문호개방 2. 보험계약자간 형평성 제고 및 다양한 고객의 보장니드에 부응 3. 상품판매 확대 및 Risk헷지를 통한 수입보험료 증대 및 사차익 개선 4. 본격적인 가격경쟁에 대비한 보험사 체질 개선 5. 회사 이미지 제고 및 진단 거부감 해소, 포트폴리오 약화 방지 Ⅵ. 결론(結論) o 종래의 소극적이고 일률적인 인수기법에서 탈피하여 피보험자를 다양한 측면에서 위험평가하여 적정 보험료 부가와 합리적 가입조건을 제시하는 적절한 위험평가 수단을 도입하고, o 언더라이팅 인수기법의 선진화와 함께 언더라이팅 인력의 전문화, 정보입수 및 시스템 인프라의 구축 등이 병행함으로써, o 보험사의 사차손익 관리측면에서 뿐만 아니라 보험시장 개방 및 급변하는 보험환경에 대비한 한국 생보언더라이팅 경쟁력 강화 및 언더라이터의 글로벌화에도 크게 기여할 것임.

  • PDF

Comparative Analysis among Radar Image Filters for Flood Mapping (홍수매핑을 위한 레이더 영상 필터의 비교분석)

  • Kim, Daeseong;Jung, Hyung-Sup;Baek, Wonkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.43-52
    • /
    • 2016
  • Due to the characteristics of microwave signals, Radar satellite image has been used for flood detection without weather and time influence. The more methods of flood detection were developed, the more detection rate of flood area has been increased. Since flood causes a lot of damages, flooded area should be distinguished from non flooded area. Also, the detection of flood area should be accurate. Therefore, not only image resolution but also the filtering process is critical to minimize resolution degradation. Although a resolution of radar images become better as technology develops, there were a limited focused on a highly suitable filtering methods for flood detection. Thus, the purpose of this study is to find out the most appropriate filtering method for flood detection by comparing three filtering methods: Lee filter, Frost filter and NL-means filter. Therefore, to compare the filters to detect floods, each filters are applied to the radar image. Comparison was drawn among filtered images. Then, the flood map, results of filtered images are compared in that order. As a result, Frost and NL-means filter are more effective in removing the speckle noise compared to Lee filter. In case of Frost filter, resolution degradation occurred severly during removal of the noise. In case of NL-means filter, shadow effect which could be one of the main reasons that causes false detection were not eliminated comparing to other filters. Nevertheless, result of NL-means filter shows the best detection rate because the number of shadow pixels is relatively low in entire image. Kappa coefficient is scored 0.81 for NL-means filtered image and 0.55, 0.64 and 0.74 follows for non filtered image, Lee filtered image and Frost filtered image respectively. Also, in the process of NL-means filter, speckle noise could be removed without resolution degradation. Accordingly, flooded area could be distinguished effectively from other area in NL-means filtered image.

Improved Method of License Plate Detection and Recognition using Synthetic Number Plate (인조 번호판을 이용한 자동차 번호인식 성능 향상 기법)

  • Chang, Il-Sik;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.453-462
    • /
    • 2021
  • A lot of license plate data is required for car number recognition. License plate data needs to be balanced from past license plates to the latest license plates. However, it is difficult to obtain data from the actual past license plate to the latest ones. In order to solve this problem, a license plate recognition study through deep learning is being conducted by creating a synthetic license plates. Since the synthetic data have differences from real data, and various data augmentation techniques are used to solve these problems. Existing data augmentation simply used methods such as brightness, rotation, affine transformation, blur, and noise. In this paper, we apply a style transformation method that transforms synthetic data into real-world data styles with data augmentation methods. In addition, real license plate data are noisy when it is captured from a distance and under the dark environment. If we simply recognize characters with input data, chances of misrecognition are high. To improve character recognition, in this paper, we applied the DeblurGANv2 method as a quality improvement method for character recognition, increasing the accuracy of license plate recognition. The method of deep learning for license plate detection and license plate number recognition used YOLO-V5. To determine the performance of the synthetic license plate data, we construct a test set by collecting our own secured license plates. License plate detection without style conversion recorded 0.614 mAP. As a result of applying the style transformation, we confirm that the license plate detection performance was improved by recording 0.679mAP. In addition, the successul detection rate without image enhancement was 0.872, and the detection rate was 0.915 after image enhancement, confirming that the performance improved.