• Title/Summary/Keyword: 테레프탈산

Search Result 16, Processing Time 0.023 seconds

기구 및 용기.포장의 기준.규격 중 개정

  • Korea Packaging Association INC.
    • The monthly packaging world
    • /
    • s.176
    • /
    • pp.126-129
    • /
    • 2007
  • 식품의약안전청은 PET용기에 대한 안전관리를 위해 테레프탈산 및 이소프탈산에 대한 용출규격을 신설하여 기구 및 용기.포장의 안전관리를 도모하고자 기구 및 용기.포장의 기준.규격 중 개정안을 발표하고 폴리에틸렌테레프탈레이트(polyethyleneterephthalate:PET)중 테레프탈산 및 이소프탈산 용출규격, 시험방법을 신설했다. 본 고에서는 주요내용을 살펴보고 신구조문을 비교해 보도록 한다.

  • PDF

Analysis of Organic Impurities in Terephthalic Acid Manufacturing Process (테레프탈산 제조공정 중의 유기불순물 분석)

  • Kim, Dong Bum;Cha, Woonou;Kwak, Kyu Dae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1204-1208
    • /
    • 1996
  • The organic impurities are formed in the p-xylene oxidation process to terephthalic acid(TPA) and they are present in the filtrate(mother liquor) solution or the TPA particles. The organic impurities present in the p-xylene oxidation are formed through side reactions or incomplete reaction. In this study, the main organic impurities, such as benzoic acid, p-toluic acid, p-tolualdehyde, 4-carboxybenzaldehyde, phthalic acid, isophthalic acid, trimellitic acid, and 4-hydroxymethyl benzoic acid were identified simultaneously by gas chromatograghy. The above impurities were reacted with bis(trimethylsilyl)trifluoroacetamide in the mixture of internal standard solution and pyridine solution by trimethylsilylation, where the internal standard solution was made by 99% bis (trimethylsilyl)trifluoroacetamide and 1% trimethylchlorosilane. The main organic impurities above mentioned can be analyzed quantitatively within 50 min.

  • PDF

Advanced Oxidation Process for the Treatment of Terephthalic Acid Wastewater using UV, H2O2 and O3 : Organic and Color Removal Studies (UV, H2O2, 오존을 이용한 고급산화공정에서의 테레프탈산 제조공정 폐수 처리 : 유기물 및 색도제거 연구)

  • Kwon, Tae-Ouk;Park, Bo-Bae;Moon, Il-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.648-655
    • /
    • 2007
  • UV/H_2O_2$, $O_3$, $O_3/H_2O_2$, $UV/H_2O_2/O_3$ processes were tested for the removal of COD and color from terephthalic acid wastewater. COD removal efficiencies were 10, 48, 56, 63% in the $UV/H_2O_2$, $O_3$, $O_3/H_2O_2$, $UV/H_2O_2/O_3$ process respectively. Color removal efficiency of $UV/H_2O_2$ process was 80% and $O_3$, $O_3/H_2O_2$, $UV/H_2O_2/O_3$ processes were almost more than 99%. Terephthalic acid, isophthalic acid and benzoic acid were completely destructed in terephthalic wastewater within 120 min by $UV/H_2O_2/O_3$ process and shows high COD and color removal efficiencies. The optimum concentration of $H_2O_2$ dosage was found to be 0.5 M, 25 mM and 5 mM for $UV/H_2O_2$, $O_3/H_2O_2$ and $UV/H_2O_2/O_3$ processes respectively, Organic destruction efficiency was enhanced and also reducing the consumption of $H_2O_2$ dosage by combining UV, $H_2O_2$ and $O_3$ process.

Chemical Structure Study on Copolyterephthalates Based on Ethylene Glycol and 1, 4-Cyclohexane Dimethanol by High Resolution NMR Analysis (고분해능 NMR 분석법에 의한 에틸렌글리콜과 1, 4-시클로헥산디메탄올의 테레프탈산 공중합체의 화학구조 연구)

  • Yoo, Hee-Yeoul;Kim, Sang-Wook;Okui, Norimasa
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.770-775
    • /
    • 1993
  • Chemical structure of poly(ethylene terephthalate-co-1, 4-cyclohexylene dimethylene terephthalate), P(ET-CT) copolyesters was investigated by High Resolution NMR analysis. The copolymer composition and isomeric ratio were determined by methylene resonance peaks which were separated into three peaks corresponding to ET, trans CT and cis CT units, respectively. The copolymer sequence distribution was evaluated from the carbon resonance peaks connected to carbonyl groups in benzene, indicating died distribution. According to statistics model, these copolyesters are almost random copolymers. The copolymer sequence distribution could be simulated and its averaged length was calculated by random copolymer statistics.

  • PDF

Preparation of PET non-woven by Electro-spinning (전기 방사를 이용한 PET(Polyethylene terephthalate) 부직포 제조)

  • 김관우;이근형;김학용;이덕래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.177-178
    • /
    • 2002
  • 일반적으로 폴리에틸렌테레프탈레이트(polyethylene terephthalate)는 에틸렌글리콜(ethylene glycol)과 테레프탈산(terephthalic acid) 또는 디메틸렌 테레프탈레이트(dimethylene terephthalate)를 중합시켜 만든다[1]. 폴리에스테르는 전도성 필름, 전기전자분야, 청량음료의 병 등으로 널리 사용되고 있다. 또한 뛰어난 강도, 내열성을 이용하여 자동차분야, 전기분야에서 금속, 페놀수지를 대체하는 용도로 사용되고 있다. (중략)

  • PDF

Analysis of Cotton/Polyester Fabrics using Pyrolysis Gas Chromatograpy (열분해-GC에 의한 면/폴리에스터 혼방 직물의 분석)

  • 조미숙;김명덕;박성우;윤기준;남재도;이종훈;이영관
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.271-274
    • /
    • 2003
  • A pyrolysis gas-chromatographic method (Py-GC) was utilized for the identification as well as the content measurement of textile materials. Py-GC was applied to natural cotton fiber, synthetic polyester fiber, and their blended fabrics. The characteristic peaks originated from thermally decomposed products were observed, and the area of peak increased with the content of polyester. The products of pyrolized polyester were identified as benzoic acid terephthalic acid, and vinyl benzoic acid, which were characterized by mass spectrometry. This analytic method of offered a quantitative means to identify the content of cotton and polyester.

Analytical Methods of Hydroxyl Radical Produced by TiO2 Photo-catalytic Oxidation (TiO2 광촉매 산화 반응에서 생성된 수산기 라디칼 분석 방법)

  • Kim, Seong Hee;Lee, Sang-Woo;Kim, Jeong Jin;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2015
  • The performance of $TiO_2$ photo-catalytic oxidation process is significantly dependent on the amount of hydroxyl radicals produced during the process, and it is an essential prerequisite to quantify its production. However, precise and accurate methods for quantification of hydroxyl radicals have not been developed so far. For this reason, this study was initiated to compare existing methods for analysis of hydroxyl radicals produced by $TiO_2$ photo-catalytic oxidation and to propose a new method to overcome the limitation of established methods. To simulate $TiO_2$ photo-catalytic oxidation process, Degussa P25 which has been widely used as a standard $TiO_2$ photo-catalyst was used with the dose of 0.05 g/L. The light source of process was UVC mercury low-pressure lamp (11 W, $2,975mW/cm^2$). The results indicate that both potassium iodide (KI)/UV-vis spectrometer and terephthalic acid (TPA)/fluorescence spectrometer methods could be applied to qualitatively measure hydroxyl radicals via detection of triiodide ion ($I_3{^-}$) and 2-hydroxyterephthalic acid which are produced by reactions of iodine ion ($I^-$) and TPA with hydroxyl radicals, respectively. However, it was possible to quantitatively measure hydroxyl radicals using TPA method coupled with high-performance liquid chromatograph (HPLC). The analytical results using TPA/HPLC method show that hydroxyl radical of 0.013 M was produced after 8 hours operation of photo-catalytic oxidation under specific experimental conditions of this study. The proposed method is expected to contribute to precise the evaluation of the performance of photo-catalytic oxidation process.

The Effect of Substituents on LC Behavior of Bis(p-substituted phenyl) 2-Decyloxyterephthalate (Bis(p-substituted phenyl) 2-decyloxyterephthalate의 액정 특성에 대한 치환기 효과)

  • Park, Joo-Hoon;Lee, Jong-Kyu;Choi, Ok-Byung;So, Bong-Keun;Lee, Soo-Min;Lee, Jun-Woo;Jin, Jung-Il
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.127-137
    • /
    • 2000
  • Eleven new compounds that are composed of bis(p-substituted phenyl) terephthalate unitand the decyloxy pendant as lateral were synthesized and their thermal and liquid crystalline properties were studied by the differential scanning calorimetry (DSC) and on a hot-stage of a polarizing microscope. The ter-minal substituent groups of the compound were varied; X= -H(II-H), -F(lI-F), -CII(II-CI), -Br(ll-Br), -I(II-I), -$NO_2(lI-NO_2$), $-CF_3(II-CF_3$), -$OC_2H_5(II-OC_2H_5$), -$OC_4H_9(II-OC_4H_9$), -$C_6H_5(Il-C_6H_5$). The compounds of $II-OC_2H_5,\;II-OC_4H_9$ and $II-C_6H_5$ were monotropically nematic. In contrast, the compounds of Il-H, II-F, II-Cl, II-Br, II-I, $lI-NO_2$, $II-CF_3$, and II-CN did not show liquid crystalline properties.

  • PDF

Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process (디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구)

  • Lee, Chang Jin;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.790-803
    • /
    • 2019
  • The dioctyl terephthalic acid (DOTP) process produces plastic plasticizers by esterification of terephthalic acid with powder in the form of octanol. In this study, the dust explosion characteristics of terephthalic acid directly injected into the manhole in the form of powder in the presence of flammable solvent or vapor in the reactor of this process were investigated. Dust particle size and particle size distribution dust characteristics were investigated, and pyrolysis characteristics of dust were investigated to estimate fire and explosion characteristics and ignition temperature. Also, the minimum ignition energy experiment was performed to evaluate the explosion sensitivity. As a result, the average particle size of terephthalic acid powder was $143.433{\mu}m$. From the thermal analysis carried out under these particle size and particle size distribution conditions, the ignition temperature of the dust was about $253^{\circ}C$. The lower explosive limit (LEL) of the terephthalic acid was determined to be $50g/m^3$. The minimum ignition energy (MIE) for explosion sensitivity is (10 < MIE < 300) mJ, and the estimated minimum ignition energy (Es) based on the ignition probability is 210 mJ. The maximum explosion pressure ($P_{max}$) and the maximum explosion pressure rise rate $({\frac{dP}{dt}})_{max}$ of terephthalic acid dust were 7.1 bar and 511 bar/s, respectively. The dust explosion index (Kst) was 139 mbar/s, corresponding to the dust explosion grade St 1.