• Title/Summary/Keyword: 텀블계수

Search Result 9, Processing Time 0.023 seconds

In -Cylinder Flow Characteristics Varying Intake Valve Lift (밸브 리프트 변화에 따른 실린더 내 흡입 공기의 유동 특성)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.82-88
    • /
    • 1999
  • The object of this study is to find new evaluation index for in-cylinder flow chracteristics istead of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angularflow characteristics instead of swirl and tumble coefficient.

  • PDF

A Study on the Steady Flow of Intake Port in Single Cylinder Engine Head (단기통 엔진 헤드에서 흡기포트의 정상유동에 관한 연구)

  • Kim, Dae-Yeol;Choi, Soo-Kwang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.13-21
    • /
    • 2007
  • This paper presents characteristics of steady flow by variation of a combustion chamber and an intake port. Gas flow field inside a combustion chamber is the important factor in improving combustion stability and reduction of emission level. The flow characteristics such as flow coefficient, tumble ratio and swirl ratio are measured by the steady flow rig test with an impulse meter in this study. In the measuring, the valve lifts are varied between 1mm to 10mm. The three combustion chambers and two intake ports were applied to the steady flow apparatus in order to investigate the effect of swirl and tumble on the in-cylinder flow. As a result, tumble ratio were found to be different by variation of the combustion chambers and the intake ports. The data from the present study can be applied to design of a similar engine as basic data.

A Study on Combined Effects between Swirl and Tumble Flow of Intake Port System in Cylinder Head (엔진 흡입포트 시스템 유동특성 규명을 위한 스월-텀블 합성효과에 관한 연구)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.76-82
    • /
    • 1999
  • The object of this study is to find new evalution index for in-cylinder flow characteristics insteady of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angular flow characteristics.

  • PDF

A Study on the Influence of Turbulent Intensity on DOHC Engine Performance (DOHC 가솔린기관의 연소실 난류특성이 기관성능에 미치는 영향에 관한 연구)

  • Kim, C.S.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.12-23
    • /
    • 1994
  • In order to investigate the effect of turbulent intensity on combustion characteristics, new flame factor model was developed. The principal study is the evaluation of interaction of swirl, tumble and unstrutural component of flow characteristics and correlation between turbulent intensity and flame factor. Computational and experimental study has been, performed such as quasi-dimensional cycle simulation, three dimensional flow analysis, engine performance test and diagnostic simulation. From these studies, it was found that flame factor was a function of engine speed and turbulent intensity.

  • PDF

Steady Flow Characteristics of Flow-Intensifying Valve Configurations (유동 강화형 밸브의 형상에 따른 정상 유동 특성)

  • Choi, Su-Jin;Ryoo, Ki-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.166-174
    • /
    • 1999
  • The flow characteristics of 2-valve and 4-valve cylinder heads with various blocked-valve were experimentally investigated in a steady flow rig. Effects of the blocked-valve configurations on flow coefficient, swirl and tumble intensity are studied. Compared to the conventional valve, the blocked valve in both cylinder heads have the much lower flow coefficient and the much higher intensity of swirl and tumble. Under the same size of blockage, the value of flow coefficient and swirl(or tumble) intensity were varied according to the position of blockage. Throughout these steady flow test the optimized positions of blockage in both cylinder heads were determined.

Study on the Experimental Optimization of DOHC Intake Port Shape for Swirl Generation (선회류 생성 DOHC 흡기포트 형상의 실험적 최적화에 관한 연구)

  • 김재웅;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.149-161
    • /
    • 1997
  • Masked intake ports of a DOHC gasoline engine were divised and the shape was optimized to maximize the swirling and tumbling motions in the cylinder. Performances of the ports, swirling number, tumbling number and discharge coefficient were measured by Ricardo's rig test. By combination of the angle and height of the protrusions in the intake ports wall, swirling and tumbling strength can be controlled and the port shape can be optimized to increase the swirling number 13 times and tumbling number 2 times larger than those of an original port of DOHC engine with the expense of 3% decrease of discharge coefficient.

  • PDF

Development of the 3-D Bulk Motion Index for In-Cylinder Flow Induced by Induction System (I) - Based on the 3-D CFD Simulation Results - (흡기시스템을 통해 실린더로 유도되는 공기의 3차원 Bulk Motion Index 개발 (I) - 3차원 유동해석결과를 중심으로 -)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Park, Pyeong-Wan;Kim, Ki-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1057-1065
    • /
    • 2006
  • In order to figure out the physical meaning of 3-D angular flow index for in-cylinder bulk motion, CFD analysis for the swirl and tumble steady flow test rig were made using commercial package STAR-CD. Computer simulations and rig tests on some kinds of induced flow conditions were carried out. Finally, based on the comparison between the simulated results and measured results, the physical meaning of 3-D angular flow index $|\longrightarrow_{N_B}|$, $\beta$ composed of swirl and tumble coefficients measured by steady flow test rig was described.

Development of the 3-D Bulk Motion Index for In-Cylinder Flow Induced by Induction System (II) - Based on the Steady Flow Rig Test Results - (흡기시스템을 통해 실린더로 유도되는 공기의 3차원 Bulk Motion Index 개발 (II) - 정상유동실험결과를 중심으로 -)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Park, Pyeong-Wan;Kim, Ki-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1066-1073
    • /
    • 2006
  • Recently, because the variable induction systems are adopted to intake system, in-cylinder flow induced by induction system is very complex. Therefore it is very difficult to describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, in order to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$) Finally, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

A Study on the New 3-D Angular Flow Index for Evaluation of In-Cylinder Bulk Flow Characteristics of the Air Induced by Variable Induction System (가변 흡기시스템에 의해 유도되는 흡입공기의 유동특성 평가를 위한 새로운 3차원 회전유동 지수에 관한 연구)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Sim, Dae-Gon;Park, Pyeong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.99-105
    • /
    • 2007
  • It is very important to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system. In-cylinder flow induced by variable induction system is very complex, so we can not describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$), for in-cylinder bulk flow characteristics. And also, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.