• Title/Summary/Keyword: 터파기 공법

Search Result 15, Processing Time 0.022 seconds

The Economic Impact of Excavation Work Failure on a Construction Project (터파기 공사 사고가 공사에 미치는 경제적 영향)

  • Go, Kwang-Ro;Lee, Ghang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.643-646
    • /
    • 2007
  • As increase of the land price at downtown area, it makes people more and more interested of improving the space utilization such as makes buildings bigger, deeper and higher. Therefore, the importance of the underground construction which is the basic principle has been increased. As constructors have to complete underground construction as soon as possible with the minimum costs, they concentrate on the whole process of underground structure. Although they makes every these efforts, construction failure still happen because of the uncertainty of the condition of soil and the unexpected danger of underground construction. To make matter worse, there are only some examples without detailed information like 'how much this breakdown damage to the construction?' so it is the anther problem that most of people doesn't recognize the economical negative impact of underground structure breakdown. This report would make people understood the importance and risk of the underground construction by showing some analysis which was assumed from the real accidents.

  • PDF

Case Analyses of the Selection Process of an Excavation Method (지하공사 사례를 기반으로 한 터파기 공법 선정프로세스 분석)

  • Park, Sang-Hyun;Lee, Ghang;Choi, Myung-Seok;Kang, Hyun-Jeong;Rhim, Hong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.101-104
    • /
    • 2007
  • As the proportion of underground construction increases, the impact of inappropriate selection of a underground construction method for a construction size increases. The purpose of this study is to develop an objective way of selecting an excavation method. There have been several attempts to achieve the same goal using various data mining methods such as the artificial neural network, the support vector machine, and the case-based reasoning. However, they focused only on the selection of a retaining wall construction method out of six types of retaining walls. When we categorized an underground construction work into four groups and added more number of independent variables (i.e., more number of construction methods), the predictability decreased. As an alternative, we developed a decision tree by analyzing 25 earthwork cases with detailed information. We implemented the developed decision tree as a computer-supported program called Dr. underground and are still in the process of validating and revising the decision tree. This study is still in a preliminary stage and will be improved by collecting and analyzing more cases.

  • PDF

A case study of application Finecker Plus in field (미진동 파쇄기의 현장 적용에 관한 연구)

  • Min Hyung-Dong;Lee Yun-Jae;Song Young-Seok;Kwon O-Sung;Park Yun-Seok
    • Proceedings of the KSEE Conference
    • /
    • 2004.08a
    • /
    • pp.49-75
    • /
    • 2004
  • 소음진동 규제법의 강화, 각종 건설민원 발생 및 안전강화 관리 차원에서 현재 국내 터파기 현장 및 각종 토공사에서 종래 시행되어지던 발파공법만으로 시행하는 것은 곤란하다. 건설교통부 설계 지침에서도 진동 규제치의 차이를 두어 파쇄와 발파와의 차이를 확연히 구분하는 실정이다. 기존에 발파는 그 경험이 많아 효과적인 방법 등이 널리 알려져 있지만 파쇄의 경우는 그 시공사례가 많지 않아 그 연구의 필요성이 대두되고 있다. 본 연구는 건교부에서 제시한 암파쇄굴착공법에 사용되어지는 미진동 파쇄기에 대한 연구로써 연암, 보통암, 경암지역에서의 전색제, 적정 패턴, 진동 특성 등을 분석하는데 그 목적이 있다. 시험은 크게 1, 2 타입으로 구분하여 실시하였으며 1타입의 경우는 천공장이 1.5m(180g 장약)이고, 2타입의 경우는 2.5m(360g)이다. 두 패턴을 기본으로 저항선, 공간격을 달리하여 시험을 진행하면서 그에 따르는 진동 및 파쇄정도의 차이를 관찰할 수 있었으며 암석 강도별 예상 진동식을 제안하였다.

  • PDF

A Study on the Behaviour Analysis and Construction Method of the Self-Supported Earth Retaining Wall (SSR) Using Landslide Stabilizing Piles (2열 H-파일을 이용한 자립식 흙막이 공법(SSR)의 거동분석 및 시공방법에 관한 연구)

  • Sim, Jae-Uk;Park, Keun-Bo;Son, Sung-Gon;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.41-54
    • /
    • 2009
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall (SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below excavation level, tied together at head of soldier piles and landslide stabilizing piles by beams. In order to investigate applicability and safety of this system, a series of experimental model tests were carried out and the obtained results are presented and discussed. Furthermore, the measured data from seven different sites on which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea. It is observed that lateral wall movements obtained from the experimental model is in good agreement with the general trend observed by in site measurements.

An Improvement of Concurrent Placement of Footing and Slab Concrete (기초 및 바닥층 동시타설 공사의 개선방안 연구)

  • Lee, Dong-Hoon;Choi, Jae-Hwi;Kill, Jong-Il;Seo, Deok-Seok;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.121-129
    • /
    • 2009
  • The construction sites of small and medium buildings have small scale groundwork and the depth of excavation is often shallow. In this case, if the groundwork, girders, and ground slabs are built simultaneously by embedded assisting form rather than the existing conventional method to place concrete twice using the general form, we can expect to reduce the frame duration of the basement, resulting in cost savings. The existing embedded assisting form is restricted from use because there are cost problems with materials, labor costs,and with quality depending on the form's type. Therefore, this study is to provide an improved suggestion of building the groundwork, girders, and ground slabs simultaneously with Polystyrene by using the embedded assisting form. It also will compare the technique with existing methods of construction, and will verify its usefulness by evaluating each method of construction.

Study on the Application of Semi-open cut Top-Down Construction for Framework (세미 오픈컷 역타공법의 현장적용에 관한 연구)

  • Sho, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.129-138
    • /
    • 2011
  • Construction methods for underground structure are classified as bottom-up, up-up, and top-down methods depending on the procedure of construction related to a superstructure. In top-down construction methods, building's main structure is built from the ground level downwards by sequentially alternating ground excavation and structure construction. In the mean time, the main structure is also used as supporting structure for earth-retaining wall, which results in the increased stability of the earth-retaining wall due to the minimized deformation in adjacent structures and surrounding grounds. In addition, the method makes it easy to secure a field for construction work in the downtown area by using each floor slabs as working spaces. However top-down construction method is often avoided since an excavation under the slab has low efficiency and difficult environment for work, and high cost compared with earth anchor method. This paper proposes a combined construction method where semi-open cut is selected as excavation work, slurry as earth -retaining wall and CWS as top-down construction method. In the case study targeted for an actual construction project, the proposed method is compared with existing top-down construction method in terms of economic feasibility, construction period and work efficiency. The proposed construction method results in increased work efficiency in the transportation of earth and sand, and steel frame erection, better quality management in PHD construction, and reduced construction period.

Rock Surface Protection According to Decrease of Blasting Vibration (진동저감 대책을 통한 절취면 보호)

  • Hong, Seong-Min;Song, Ha-Lim;Kang, Choo-Won;Chang, Ho-Min
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.21-28
    • /
    • 2012
  • Blasting methods are frequently used in case of forming slope artificially like slope cutting and open-cut method in the downtown area because of many economical and effective advantages. It is important that blasting work is carried out maintaining original strength of rock and not to damage rock face. And it is also considered that blasting method to decrease ground vibration is essential to the point of blast damages due to the ground vibration. In this study, to form a smooth plane of rock slope face, many trial blasts were carried out in this way that explosives were installed in detonating cord by equal interval in different charging method and stemming method. Using 4 blasting patterns in total 60 blast holes and 20 times of blasts were carried out. At the same time ground vibration measurements were carried out 15~102m away from the blast source, and total number of 310 data were obtained. Measured data for ground vibration velocity were analyzed so as to study blasting method to protect slope plane while decreasing blast vibration in an effective way.

Pullout Resistance of Pressurized Soil-Nailing by Cavity Expansion Theory (공팽창이론에 의한 압력식 쏘일네일링의 인발저항력 산정)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.35-46
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of mean normal stress and the increase of coefficient of pullout friction. From laboratory tests, it was found that dilatancy angle could be estimated by modified cavity expansion theory using the measured wall displacements. The radial displacement increases with dilatancy angle decrease and the dilatancy angle increases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the modified cavity expansion theory.

Behavior Characteristics of Precast Concrete-Panel Retaining Wall Adhered to In-situ Ground through Large Scaled Load Test (대형재하시험을 통한 원지반 부착식 패널옹벽의 거동특성)

  • Shin, Yuncheol;Min, Kyongnam;Kim, Jinhee;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.45-53
    • /
    • 2016
  • A precast panel wall system resists against the horizontal earth pressure by increasing the shear strength of ground by reinforcement connected to the panel. The application of precast panel wall system is growing to lately minimize the earth work and environmental damage caused by large cut slope and to use the limited land effectively. The ground adhered panel wall system is the construction method that has the panel engraved with natural rock shape to improve the landscape. This system is developed to complete Top-Down method, and it is possible to have vertical cut, and to adhere to in-situ ground, improve construction ability by minimizing the ground relaxation and exclusion the trench and backfill process. In this study the field tests were performed to verify the construction ability about the vertical cut and complete Top-Down process and the construction behavior of ground adhered panel wall system was analyzed by large scale loading test and measurement results during loading test.