• Title/Summary/Keyword: 터빈효율

Search Result 463, Processing Time 0.022 seconds

Experimental Study of Micro hydropower with Vortex Generation at Lower Head Water (저낙차에서 와류발생부를 구비한 마이크로 소수력에 관한 실험 연구)

  • Choi, In-Ho;Kim, Jong-Woo;Chung, Gi-Soo
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • This paper described a laboratory investigation of micro hydropower at lower head water in a free vortex flow. The vortex height, turbine rotation and torque for straight blade with inner curved edge, twisted blade and curved blade were investigated at the flow rate of 0.0069 ㎥/s in the inlet channel. The results showed that the optimum vortex strength occurred within the range of the diameter of basin to the outlet diameter ratios of 0.17~18.5. The power output and efficiency of straight blade were higher as compared to other blades. The highest amount of generated energy was 12.33 W, the torque was 0.91 N·m and the highest efficiency by considering effective head was 29.5 %, whereas the highest efficiency by considering vortex height was 80.5 % at the rotational speed of 132 rpm. The water vortex velocity of straight blade was about 2.8 times larger than the mean velocity in the inlet channel.

Theoretical Analysis on the Factors Affecting the Power Efficiency of the Kalina Cycle (칼리나 사이클의 발전효율에 영향을 미치는 요소에 관한 이론적 해석)

  • Lee, Ki-Woo;Chun, Won-Pyo;Shin, Hyeon-Seung;Park, Byung-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5425-5433
    • /
    • 2014
  • This study examined the effects of the key parameters on the power efficiency of the waste heat power plant using the EES program to obtain data for the design of the 20kW Kalina power plant. The parameters include the ammonia mass fraction, vapor pressure, heat source temperature, and the cooling water temperature. According to the analyses, a lower ammonia mass fraction and a higher vapor pressure increase the efficiency, in general. On the other hand, this study shows that there is a specific region with a very low ammonia mass fraction, where the efficiency decreases with ammonia mass fraction. Regarding the vapor pressure at the turbine inlet, the power efficiency increases with increasing vapor pressure. In addition, it was found that the influence of the vapor pressure on the efficiency increases with increasing ammonia mass fraction. Finally, the optimal condition for the maximum power efficiency is defined in this study, i.e., the maximum efficiency was 15% with a 25bar vapor pressure, $160^{\circ}C$ heat source temperature, $10^{\circ}C$ cooling water temperature, and 0.4 ammonia mass fraction.

POWER AND ENERGY STORAGE DEVICES FOR NEXT GENERATION HYBRID ELECTRIC VEHICLE (차세대 복합형 전기자동차의 전력 및 에너지 저장장치)

  • Kim, Min-Huei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.1 no.1
    • /
    • pp.31-41
    • /
    • 1998
  • Fuel conservation and environmental pollution control are the principal motivating factors that are urging at present widespread research and development activities for electric hybrid vehicles throughout the world. The paper describes different possible energy storage devices, such as battery, flywheel and ultra capacitor, and power sources, such as gasoline engine, diesel engine, gas turbine and fuel cell for next generation hybrid electric vehicle. The technology trend and comparison in energy storage and power devices indicate that battery and gasoline engine, respectively will remain the most viable devices for hybrid vehicle at least in the near future.

  • PDF

Effect of Anti-Vortex Hole Angle on the Flat Plate Film Cooling Effectiveness (반와류 홀의 각도가 평판의 막냉각 효율에 미치는 영향 연구)

  • Park, Soon Sang;Park, Jung Shin;Lee, Sang Hoon;Moon, Young Gi;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.5-10
    • /
    • 2014
  • In this paper, the experimental study was carried to investigate the effect of angle of the anti-vortex holes on the film cooling effectiveness on a flat plate. The pressure sensitive paint technique was applied to measure the film cooling effectiveness. Two anti-vortex hole angles of $0^{\circ}$ and $15^{\circ}$ with respect to the primary hole were considered, and the simple cylindrical hole case was also tested. The blowing ratio based on the cylindrical hole was 0.5 and the same flow rate was kept for all anti-vortex hole cases. Results showed that the film cooling effectiveness for the anti-vortex hole cases were much higher than that of the cylindrical case. Among the anti-vortex hole cases, $15^{\circ}$ angle anti-vortex hole case showed higher film cooling effectiveness than that by the $0^{\circ}$ angle anti-vortex hole case.

The Performance Analysis of a Counter-rotating Tubular Type Turbine with the Number of Runner Vane (러너베인 깃수의 변화에 따른 튜블러형 상반전 수차의 성능해석)

  • Park, Jihoon;Lee, Nakjoong;Hwang, Youngho;Kim, Youtaek;Lee, Youngho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.192.1-192.1
    • /
    • 2010
  • Micro hydraulic turbines take a growing interest because of its small and simple structure as well as high possibility of applying to micro and small hydropower resources. The differential pressure exiting within the city water pipelines can be used efficiently to generate electricity like the energy generated through gravitational potential energy in dams. In order to reduce water pressure at the inlet of water cleaning centers, pressure reducing valves are used widely. Therefore, pressure energy is wasted. Instead of using the pressure reduction valve, a micro counter-rotating hydraulic turbine can be replaced to get energy caused by the large differential pressure found in the city water pipelines. In this paper, detail studies have been carried out to acquire basic design data of micro counter-rotating hydraulic turbine, output power, head, and efficiency characteristics on various number of runner vane. Moreover, the influences of pressure, tangential and axial velocity distributions on turbine performance are also investigated.

  • PDF

A Study on Component Map Generation of a Gas Turbine Engine Using Genetic Algorithms (유전자 알고리즘을 이용한 가스터빈 엔진의 구성품 성능선도 생성에 관한 연구)

  • Kong Chang-Duk;Kho Seong-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.44-52
    • /
    • 2004
  • In this study, a component map generation method using experimental data and the genetic algorithms are newly proposed. In order to generate the performance map for components of this engine, after obtaining engine performance data through many experimental tests, and then the third order equations which have relationships the mass flow function the pressure ratio and the isentropic efficiency as to the engine rotational speed were derived by using the genetic algorithms. A steady-state performance analysis was performed with the generated maps of the compressor by the commercial gas turbine performance analysis program GASTURB. In comparison, it was found that the component maps can be generated from the experimental test data by using the genetic algorithms, and it was confirmed that the analysis results using the generated maps were very similar to those using the scaled maps from the GASTURB.

A Optimization of the ORC for Ship's Power Generation System (해수 온도차를 이용한 선박의 ORC 발전 시스템 최적화)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.595-602
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC (Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation was performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. Various fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared. Finally, 2,400kW output power is obtained by system optimization of the preheater and reheater utilizing waste heat form sea water cooling system.

Development of 800kW class Direct Drive Synchronous Generator for WECS (풍력발전기용 800kW급 직접구동형 발전기 개발)

  • Lee H. G.;Kim D. E.;Suh H. S.;Han H. S.;Jung Y. G.;Lee W. W.;Park K. H.;Chung C. W.;Lim M. S.;Oh M. S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.76-79
    • /
    • 2005
  • 포항풍력에너지연구소와 (주)보국전기는 에너지 관리공단의 지원으로 2002년부터 직접구동형 풍력터빈( KBP-750D) 에 사용될 발전기 개발을 시작하여 2005년 3월 개발을 완료하였다. KBP-750D에 사용되는 발전기는 증속을 위한 gearbox를 사용하지 않는 직접 구동형이고, 영구자석을 사용하여 여자하는 형식이다. 이런 특징은 풍력발전에서 요구하는 주요 요구조건인 고 효율, 고 신뢰성을 만족시키기 위해서 매우 중요하다. 개발된 발전기는 25 rpm 에서 800 kW의 정격을 가지도록 설계되었다. 공극 직경은 3,320mm 이며, stator의 길이는 705mm, 공극은 4.5mm 이고, 극수는 84이다. 또한 전체 중량은 약 22 ton이다. 이 논문에서는 발전기의 물리설계, 공학설계, 제작 및 시험결과에 관해서 기술한다.

  • PDF

A Study on Determining the Size of the Interface Inductor for Grid-Connected Micro-Sources (Micro-Source의 계통 연계용 인덕터 크기 선정에 관한 연구)

  • Son, Kwang-Myung;Kim, Young-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.52-58
    • /
    • 2005
  • The concept of the Micro-Grid comprising Micro-Sources supplying both heat and power ranging from several [KW] to 1[MW] to local customers is proposed by CERTS(Consortium for Electric Reliability Technology Solutions). Micro-Sources adopt environmentally friendly and reliable power sources such as Fuel-Cell and Micro-Turbines. Micro-Sources adopt voltage source inverter with AC grid system in order to provide independent real and reactive power control for premium power quality. Thus Micro-Source needs series inductance for interfacing with AC grid system. With this reason, we propose a technique that can decide the optimal size of the inductor for effective transfer of the power into the grid.

A Study of Film Cooling of a Cylindrical Leading Edge with Shaped Injection Holes (냉각홀 형상 변화에 따른 원형봉 선단의 막냉각 특성 연구)

  • Kim, S.M.;Kim, Youn J.;Cho, H.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.21-27
    • /
    • 2003
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of a turbine blade, cylindrical body model is used. Mainstream Reynolds number based on the cylinder diameter is $7.1{\times}10^4$. The effects of coolant flow rates are studied for blowing ratios of 0.7, 1.0, 1.3 and 1.7, respectively. The temperature distribution of the cylindrical model surface is visualized with infrared thermography (IRT). Results show that the film cooling performance could be significantly improved by the shaped injection holes. For higher blowing ratio, the spanwise-diffused injection holes are better due to the lower momentum flux away from the wall plane at the hole exit.