• Title/Summary/Keyword: 터빈과 축

Search Result 296, Processing Time 0.023 seconds

Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion (인접한 조류발전용 수직축 터빈의 배치방식에 따른 성능 변화)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • Tidal farm is a multi-arrayed turbine system for utilizing tidal stream energy. For horizontal-axis turbine(HAT) system, it is recommended that each unit has to be deployed far apart in order to avoid hydrodynamic interference among turbines, as proposed by the European Marine Energy Centre(EMEC). But there is no rule for the arrangement of vertical-axis turbine(VAT) yet. Moreover it has been reported that a proper arrangement of adjacent turbines can enhance the overall efficiency even greater than an arrangement without mutual interference effect. This paper suggests the layout of VATs showing the better performances, which turned out to be quite different from HATs' arrangement. Numerical calculations were performed to investigate the performance variation in terms of the rotational direction as well as the distance between turbines. It has been shown that the best combination of rotational direction and distance between turbines can increase its performance higher about 9.2% than that of two independently operated turbines. It is likely that such improvement is due to the increased velocity between adjacent turbines. For diagonally arranged turbines, the maximum normalized mean power coefficient was obtained to be higher about 5.6% than that of two independent turbines. It is expected that the present results can be utilized for conceptual design of tidal farm to harness the tidal stream energy.

A Study of the One-Stage Axial Turbine Performance with Various Axial Gap Distances between the Stator and Rotor (정.동익 축방향 간격에 따른 단단 축류터빈의 성능시험에 관한 연구)

  • Kim, Dong-Sik;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.99-105
    • /
    • 2002
  • The performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3$/min at 290mmAq static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to three times of stator axial chord length, and performance curves are obtained with 9 different axial gaps. The efficiency varies about 8% of its peak value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.6-1.9Cx.

MPPT and yaw-axis control of parallel type wind turbine (병렬형 풍력 발전시스템의 MPPT 및 yaw축 제어)

  • IM, Jong-Wook;CHOY, Ick
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.250-251
    • /
    • 2010
  • 본 연구는 수평축(horizontal axis) 풍력 터빈에 의해서 수직축 발전기를 운전하는 구조 및 그 운전 방식에 관한 것으로서 바람에 의해 수평축 터빈 로터로 입력된 회전력을 기계적으로 두 개의 수직축 회전 성분으로 변환하여 이들로부터 전기 에너지를 얻어내고 필요에 따라 터빈 날개가 바람이 부는 방향을 향하도록 yaw-axis 제어를 하는 기술에 관한 것이다.

  • PDF

Numerical Study of The Nozzle-Rotor Axial Gap Effect on the Supersonic Turbine Performance (충동형 초음속 터빈의 노즐-로터 축간극에 따른 성능변화 연구)

  • Jeong, Soo-In;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.160-163
    • /
    • 2010
  • We performed three-dimensional CFD analysis to investigate the effect of the nozzle-rotor axial gap of a partial admission supersonic turbine on the stage performance and the flow field. The computations are conducted for five axial gaps using flow analysis program, $FLUENT^{TM}$. The results show that the axial gap between nozzle and rotor give the effect on the mass flow rates of tip leakage and the flow angle at the rotor outlet.

  • PDF

Design and CFD study of 360 W class wind turbine tree in accordance with environmental scenery (주위 경관을 고려한 360 W급 풍력터빈나무 설계 및 유동해석)

  • Ha, Min-Su;Jung, Won-Hyuk;Choi, Nak-Joon;Park, Young-Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.78-84
    • /
    • 2013
  • The objective of this paper is to develop 360 W class wind turbine tree using a helical type wind turbine. The performance of 100 W class helical wind turbine which finished the conceptual design has been forecast through the CFD analysis. After performed the analysis of one wind turbine performance, four wind turbine have been installed at the structure of a tree type and then the change of a output data has been verified through the CFD analysis. In this study, the CFD results of a helical wind turbine tree have been shown by a velocity and pressure distribution. The result could obtain more than rated power 360 W through the CFD analysis.

Performance Test of the 30-ton Class Liquid Rocket Engine Turbopump Turbine (30톤급 액체로켓 엔진용 터보펌프 터빈 성능시험)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Performance test of the 30-ton class liquid rocket engine turbopump turbine has been conducted using high pressure cold air. Overall performance of the two kinds of turbine rotors - rotor with knife-edged L.E blades and with rounded L.E blades - has been measured for various rotational speed and turbine pressure ratio. The effect of rotational speed and turbine pressure ratio on the turbine axial force behavior also has been measured in parallel. Test results have revealed that the efficiency of knife edged L.E. turbine is a little bit higher than that of rounded L.E. turbine. The axial force of the turbine varied linearly with respect to rotational speed and its magnitude largely depended on turbine pressure ratio.

A Numerical Study on a Supersonic Turbine Performance Characteristics with Different Nozzle-Rotor Axial Gap Spacings (노즐-로터 축간극 거리에 따른 초음속 터빈 내의 성능특성에 대한 수치적 연구)

  • Jeong, Sooin;Choi, Byoung-ik;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, 3-dimensional URANS simulation was performed to analyze the effect of the nozzle-rotor axial gap spacing of a supersonic impulse turbine on turbine performance. The computations were conducted for four different axial gap cases corresponding to about 6%, 10%, 20% and 30% of the blade height, respectively. The results show a good agreement with previous studies and the turbine efficiency decreases drastically in certain range. It is examined that the turbine performance characteristics could change depending on the influence of leading edge shock to the nozzle outlet. It is also found that the entropy rise distributions along the span differ from each other.

A Dynamic Simulation for Small Turbushaft Engine with Free Power Turbine Using the CMF Method (CMF 기법을 이용한 소형 분리축 방식 터보축 엔진의 동적모사)

  • 공창덕;기자영;고광웅
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.11-11
    • /
    • 1998
  • 다목적으로 활용할 수 있는 터보축 엔진의 개발을 위한 정상상태 및 동적모사 프로그램을 개발하였다. 개발비, 개발시간, 개발위험도의 절감을 위해 가스발생기 부분은 성능이 잘 알려진 기존의 터보제트 엔진을 활용하였으며 약 3000hr 이상의 수명을 확보하기 위해 터빈재질을 교체하고, Larson-Miller 곡선을 이용하여 최대회전속도와 최대 터빈 입구온도를 각각 35000 RPM과 1140 K의 결정하였다 추가되는 동력터빈의 구성품 성능선도는 압축기 터빈 성능선도를 축척하여 사용하였다. 정상상태 성능해석에는 유량 및 일평형 방정식을 이용하였으며, 동력터빈이 각각 73%, 80%, 90%, 100% RPM일 때 가스발생기를 75%(24500 RPM)에서 100%(35000 RPM)까지 5% 간격으로 나누어 계산을 수행하였다.

  • PDF

A Convergent Investigation on Flow Analysis by Type of Turbine Blade of Fluid Clutch (유체클러치 터빈 날개의 유형별 유동해석에 대한 융합연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.195-200
    • /
    • 2020
  • In this study, the flow analyses were performed on the fluid clutch turbine blade shapes of models 1, 2 and 3, with eight turbine blades tilted at 45 °, 40 °, and 35 ° angles on the propulsion shaft, respectively. The larger the angle of inclination on the propulsion shaft, the higher the flow pressure among the flow models after the back of the turbine blades. On the other hand, the smaller the angle of inclination on the propulsion shaft of the turbine wing, the lower the flow rate. It can be seen that the smaller inclination angle of the turbine blade surface on the propulsion shaft, i.e., the wing shape close to perpendicular to the flow of fluid, is more suitable for efficiently connecting and disconnecting the fluid clutch. By applying the flow analysis by type of turbine blade of fluid clutch,the study result at this paper is considered to be favorable as the convergent research material which can apply the aesthetic design.

Aerodynamic Design and Performance Prediction of Wind Turbine Blade (풍력터빈 블레이드 공력설계 및 성능예측)

  • Kim, Cheol-Wan;Cho, Tae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.677-681
    • /
    • 2011
  • Characteristics of vertical and horizontal axis wind turbines are explained. The speed and direction of wind on the blade of the Darrieus type turbine changes very severely. Therefore dynamic stall happens periodically and the wake from the front blade deteriorates the performance of rear blades. Blade element momentum theory(BEMT) is widely utilized for aerodynamic design and performace prediction of horizontal axis wind turbine(HAWT). Computation analysis and wind tunnel test are also performed for the performance prediction.

  • PDF