• Title/Summary/Keyword: 터널 환기 시스템

Search Result 97, Processing Time 0.02 seconds

A Fundamental Study on the Natural Ventilation in Local Vehicle Tunnels (국내 도로터널내 자연환기력 기초 연구)

  • 이창우;김효규;강재근;윤철욱
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1999.03a
    • /
    • pp.55-58
    • /
    • 1999
  • 현재 정부는 사회간접자본 확충을 통한 물류비용의 절감이라는 궁극적 목표를 위하여 도로터널의 확충 노력을 적극 경주하고 있으며 터널의 규모 또한 급격히 장대화 하고 있다. 또한 환경 및 안전 측면에서의 규제 강화로 인하여 터널환기 시스템이 점점 복잡해져 가고 있는 추세이다. 환기관련 주요 설비는 제트팬, 축류팬, 집진기, 수갱 등으로 대형화 및 자동화에 따라 운영비용 역시 급격히 증가하고 있으며 운영비용 중의 대부분은 현재 일반전기로 분류되어 있는 환기설비에 소요되는 전력비로, 장대터널의 경우 km 당 1 MW를 훨씬 초과하는 경우도 많아 SOC(사회간접자본)사업으로 추진되는 도로터널의 건설 및 운영상의 문제점으로 지적되고 있다. (중략)

  • PDF

A Study on Fire ventilation design of road tunnel (도로터널에서의 화재환기 설계에 관한 연구)

  • Kim, Myung-Bae;Choi, Byung-Il;Choi, Jun-Seok;Han, Yong-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • The several assumptions and design parameters to determine the ventilation rate in tunnel ventilation system were examined. In longitudinal ventilating tunnel, the ventilation rate has been determined by the critical velocity above which the smoke propagation to the upstream of ventilating air is prevented. Based upon the examination of assumptions and experimental results, we suggested the improved method to determine the critical velocity. In transverse ventilating tunnel, we found that the ventilation rate has been determined in accordance with the custom rather than fire-smoke dynamics such as the critical velocity in the longitudinal ventilating tunnel. It is because the ventilation rate in the transverse ventilation system has been determined by considering only the ventilation of contaminant by vehicle. To improve the ventilation design parameters based upon the fire-smoke dynamics, we conducted model tunnel fire experiments. From the experimental results, smoke propagating distance and smoke filling were suggested as the design parameter to determine the ventilation rate in transverse ventilating tunnel. And tunnels in Europe designed by the custom is found to have the dangerous nature in view of fire safety.

  • PDF

Experimental Study on the Designed Ventilation System Performance at Rescue Station in Tunnel Fire (터널 내 화재발생시 구난역 내의 설계된 환기 시스템 성능에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • In this study, the l/35 reduced-scale model experiment were conducted to investigate designed ventilation system performance at rescue station in tunnel fire. A model tunnel with 2 mm thick of steel, 10 m long, 0.19 m high and 0.26m was made by using Froude number scaling law. The cross-passages installing escape door at the center. were connected between accident tunnel and rescue tunnel. The n-heptane pool fire, $4cm\times4cm$, with heat release rate 698.97W were used as fire source. The fire source was located in the center and portal of accident tunnel as Worst case.. An operating ventilation system extracted smoke amount of 0.015 cms. The smoke temperature and carbon monoxide. concentration in cross-passage were measured to verify designed ventilation system. The results showed that, in center fire case without ventilation in accident tunnel, smoke did not propagated to rescue station. In portal tire case, smoke spreaded to rescue station without ventilation. But smoke did not propagated to rescue station with designed ventilation.

Interference and Re-Inflow of Contaminated Air in Successive Tunnel (연속터널에서의 오염물질 재유입 및 환기영향평가)

  • Kim, Young-Geun;Kim, Woo-Sung;Wye, Yong-Gon;Kim, Nam-Yung;Lee, Ho-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.115-134
    • /
    • 2003
  • Recently, there are many cases in the roadway design for successive tunnel with small distance between two tunnels. In this case, the degree of interference for successive tunnels is a significant consideration in the design of ventilation systems. Also, Re-inflows of contaminated air in successive tunnel make serious ventilation problems in case of fire accident in the tunnel. In this study, for successive tunnels in Donghae highway project, the concentration of contaminant such as CO, NOx and Smoke were calculated by numerical analysis using 1D and 3D-CFD analysis. And, the rate of re-inflow at the portals of successive tunnel according to the direction of wind were analysed.

  • PDF

A study on the effects of changes in the estimating criteria for ventilation requirements in road tunnels (도로터널 소요환기량 산정기준 변화에 따른 영향 분석)

  • Kim, Hyo-Gyu;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.779-793
    • /
    • 2019
  • The ventilation rate (Qreq) requirement in road tunnels is not just a basic information for determining the tunnel cross-sectional area, but also a major factor for the ventilation system selection. The Qreq is predominantly dependent on the vehicle traffic volume, while among others, the vehicle exhaust emissions and permissible standards are critical. This paper analyzes the changes in the Qreq designing criteria and/or recommendations suggested by World Road Association and local authorities over the last 20 years, since the first local designing criteria was established in 1997 by Korea Expressway Corporation. Additionally, based on the updated vehicle emission standards of Ministry of Environment and recent recommendations of the World Road Association (WRA), changes in the Qreq and its effects are studied in terms of the length and grade of the tunnel.

Simulation and Analysis of Local Ventilation characteristic of Road Tunnel with Ventilation System (환기시스템 적용 도로터널의 국소환기 특성 시뮬레이션 및 해석)

  • 박기림;오명도;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.321-332
    • /
    • 2001
  • In this study, a design program for ventilation requirements of a longitudinal raod tunnel were developed and investigated. The control volume method was applied to calculate the local air velocity and the local concentration distribution of pollutants, CO, $NO_x$, soot along the tunnel for various tunnel ventilation system. This program was validated by comparing with the practical design data for the road tunnel ventilation system. The calculation results were in good agreement with the practical design data.

  • PDF

A Study on Vehicle Drag Coefficients in Domestic Road Tunnels (국내 도로터널내 차량항력계수 관련 연구)

  • Lee, Chang-Woo;Lee, Kyeong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.313-321
    • /
    • 2005
  • Drag coefficient is one of the critical design factors to quantify the piston effect in vehicle tunnels. Several problems are raised on the drag coefficient currently applied for the ventilation system design; unverified adoption of the projected frontal area of the vehicle from the foreign study in the past, and lack of consideration for the slip-streaming effect. This study aims at better estimation of the traffic-induced ventilation force in the local tunnels. Values for the projected frontal area of the vehicles running on the local roads at present are proposed and results of an extensive CFD study are studied on the slip-streaming effects in various traffic conditions to quantify $K_{blockage}$ and the drag coefficient in the domestic tunnels.

  • PDF

A Study on the Model Experiment for Smoke Flow in Road Tunnel Fire (도로터널 화재발생시 연기유동에 관한 축소모형실험 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon;Kang, Se-Gu;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2004
  • In this study, smoke movement in tunnel fire with natural and longitudinal ventilation systems has been investigated. Reduced-scale experiments were carried out under the Froude scaling using 14.55kW fire source with a wick and experimental data is obtained with 1/18 model tunnel test. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gas was measured at emergency exit point. The results show that refuge time for 225m intervals of emergency exit in case of natural ventilation systems is 256 seconds and critical velocity for sufficient back-layer prevention is 2.8m/s for fire strength of 20MW.

  • PDF

A study on the air leakage performance improvement of duct coupling for temporary ventilation of long subsea tunnel (초장대 해저터널의 공사중 덕트 접속부의 누풍 성능 개선에 관한 연구)

  • Jo, Hyeong-Je;Min, Dea-Kee;Kim, Jong-Won;Lee, Ju-Kyung;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.319-333
    • /
    • 2017
  • The construction of long sub-sea tunnel does not provide the favorable condition for the installation of ventilation system to be used during construction due to the constrained construction space. For the ventilation system required during construction, the artificial island where ventilation shaft is located is constructed at some location along the sub-sea tunnel route, which requires a high construction cost. Therefore, it is intended, as much as possible technically, to minimize the construction of artificial island. However, this requires a longer distance between ventilation shafts, there-by causing increased air leakage at the ventilation duct connection points due to the higher fan pressure being required to deliver ventilation air. Previously the air leakage was studied as an important issue. In this study experiments were carried out to develop the improved duct connection method considering various conditions such as, tunnel length, etc. Additionally, its performance results with leakage rates are shown and compared to the "S" class leakage rate of SIA. As a result, the new duct coupling type of improved method is analyzed as applicable to such a 30 km long tunnel with the leakage rate of $1.46mm^2/m^2$, which is better performance than SIA leakage rates.

Investigation of amount of the Air Flow through a Natural Ventilator in the Subway System (지하철 자연환기구 공기 이동량 조사)

  • Bae, Sung-Joon;Hwang, Sun-Ho;Shin, Chang-Hun;Kim, Shin-Do;Lee, Kyoung-Bin;Park, Duck-Shin
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1480-1486
    • /
    • 2011
  • After installation of platform screen door (PSD) in subway stations, particulate matters (PMs), which are originally ventilated through the platform, are accumulated inside the tunnel of the subway system. It deteriorates an air quality inside the tunnel. To ventilate the accumulated PMs inside the tunnel, the natural ventilator which are located inside the tunnel (namely, tunnel ventilation system) are used as only one circulation system. In addition, the installation of PSD can affect to the aerodynamic variations inside the tunnel, since the PSD system was not considered factor when the tunnel ventilation system was designed. However, the researches about the tunnel ventilation system have not been adequate. Therefore, this study is carried out with two objectives: 1) to measure the velocity of air current by the train-induced wind, when the train passes through the tunnel, and 2) to investigate the typical patterns of air current by quantitatively evaluating the characteristics of inflow/outflow of air current which passes through the natural ventilation system. This study can suggest the basic standard to newly design the tunnel of the subway system as well as the ventilation system.

  • PDF