• Title/Summary/Keyword: 터널 시공 위험도 관리

Search Result 27, Processing Time 0.019 seconds

Quantitative evaluation of collapse hazard levels of tunnel faces by interlinked consideration of face mapping, design and construction data: focused on adaptive weights (막장관찰 및 설계/시공자료가 연계 고려된 터널막장 붕괴 위험도의 정량적 산정: 가변형 가중치 중심으로)

  • Shin, Hyu-Soung;Lee, Seung-Soo;Kim, Kwang-Yeom;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.505-522
    • /
    • 2013
  • Previously, a new concept of indexing methodology has been proposed for quantitative assessment of tunnel collapse hazard level at each tunnel face with respect to the given geological data, design condition and the corresponding construction activity (Shin et al, 2009a). In this paper, 'linear' model, in which weights of influence factors are invariable, and 'non-linear' model, in which weights of influence factors are variable, are taken into account with some examples. Then, the 'non-linear' model is validated by using 100 tunnel collapse cases. It appears that 'non-linear' model allows us to have adapted weight values of influence factors to characteristics of given tunnel site. In order to make a better understanding and help for an effective use of the system, a series of operating processes of the system are built up. Then, by following the processes, the system is applied to a real-life tunnel project in very weak and varying ground conditions. Through this approach, it would be quite apparent that the tunnel collapse hazard indices are determined by well interlinked consideration of face mapping data as well as design/construction data. The calculated indices seem to be in good agreement with available electric resistivity distribution and design/construction status. In addition, This approach could enhance effective usage of face mapping data and lead timely and well corresponding field reactions to situation of weak tunnel faces.

Development and Implementation of A GIS-based Tunnelling Risk Management System (GIS기반의 터널 시공에 따른 위험도 평가 시스템 개발 및 적용)

  • 유충식;전영우;김재훈;박영진;유정훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 2004
  • A GIS-based tunnelling risk management system(GIS-TURIMS) was developed as a product of this study, The developed system uses ArcView 8.1 as a basic platform and the built-in interface(VBA) has been used to perform first-order simplified analyses for the prediction of tunnelling-induced ground movements and building damage assessment. The main emphasis of this study was to develop a working framework that can be used in the perspective of tunnelling risk management. The developed system is capable of carrying out cornputationally intensive analyses for ground movement prediction as well as buildings/utilities damage assessment taking full advantage of the GIS technologies. This paper describes the concept and details of the GIS-TURIMS development and implementation.

TBM risk management system considering predicted ground condition ahead of tunnel face: methodology development and application (막장전방 예측기법에 근거한 TBM 터널의 리스크 관리 시스템 개발 및 현장적용)

  • Chung, Heeyoung;Park, Jeongjun;Lee, Kang-Hyun;Park, Jinho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • When utilizing a Tunnel Boring Machine (TBM) for tunnelling work, unexpected ground conditions can be encountered that are not predicted in the design stage. These include fractured zones or mixed ground conditions that are likely to reduce the stability of TBM excavation, and result in considerable economic losses such as construction delays or increases in costs. Minimizing these potential risks during tunnel construction is therefore a crucial issue in any mechanized tunneling project. This paper proposed the potential risk events that may occur due to risky ground conditions. A resistivity survey is utilized to predict the risky ground conditions ahead of the tunnel face during construction. The potential risk events are then evaluated based on their occurrence probability and impact. A TBM risk management system that can suggest proper solution methods (measures) for potential risk events is also developed. Multi-Criterion Decision Making (MCDM) is utilized to determine the optimal solution method (optimal measure) to handle risk events. Lastly, an actual construction site, at which there was a risk event during Earth Pressure-Balance (EPB) Shield TBM construction, is analyzed to verify the efficacy of the proposed system.

Management of Risk Scenarios based on Ground Conditions under Construction of a Subsea Tunnel (해저터널 시공중 지반조건별 위험 시나리오 관리기법)

  • Park, Eui-Seob;Shin, Hee-Soon;Shin, Yong-Hoon;Kim, Taek-Gon
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.275-286
    • /
    • 2009
  • In order to establish the causes and measures for technical risks that occur in various ground conditions when a subsea tunnel is excavated, it is important to configure expected risk scenarios. In addition, when the risk scenarios are classified because the scenario that occurs along all tunnel route and the scenario limited to some area are considered together, a logical framework with systematic and organized responses can be provided for project managements. In this research, project risk scenarios and management elements were configurated, and the project schedule was established for the management techniques to the risk scenario. The risk scenarios expected in a subsea tunnel were classified into a common risk scenario and a special risk scenario, and the concept which can combine with the project management elements was derived.

Tunnel Design/Construction Risk Assessment base on GIS-ANN (GIS-ANN 기반의 도심지 터널 설계/시공 위험도 평가)

  • Yoo, Chung Sik;Kim, Joo Mi;Kim, Sun Bin;Jung, Hye Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.63-72
    • /
    • 2006
  • Due to rapid development of many cities in Korea, many public facilities are required to be built as well as complementary civil structures. Consequently, a number of tunnel constructions are currently carried out throughout the country, and many more tunnels are planned to be constructed in the near future. Tunnel excavation in a city often causes serious damage to above-ground structures and sewer system because of unexpected settlement. In order to prevent the destruction, the tunnel, which bypasses the center of a city, must be specially evaluated for its influence to other structure. In addition, since a slight disturbance of above-ground structure causes numerous public complaints and civil appeals, it must be approached with different method than the mountain tunnels. In this paper, the evaluation method using the Artificial Neural Network (ANN) has been studied. The method begins with an analysis of the minimal sectional area. If its result can be used to approximate the general influence of the whole section, the actual evaluation using ANN will take off. In addition, it also studies the construction management method which reflects the real time soil behavior and environment influence during construction using Geographic Information System (GIS).

Study on key safety hazards and risk assessments for small section utility tunnel in urban areas (도심지 소단면 터널식 공동구의 핵심 안전 위험요소 및 위험성 평가 연구)

  • Seong, Joo-Hyun;Jung, Min-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.931-946
    • /
    • 2018
  • In line with the increased usability of utility pipe conduits in urban areas, construction and R&D activities of utility tunnel, incorporated with the shield TBM method, are actively under way. The utility tunnels are installed through underground excavation, and thus are relatively weak in terms of construction safety. However, hazards associated with the utility tunnel construction have not been properly identified, despite the introduction of a policy to the 'Design for Safety' for the purpose of reducing accident rates in the construction industry. Therefore, in this study, following the derivation of hazards associated with utility tunnel, these hazards were then used as the basis to uncover key safety hazards requiring extensive management in a field, which were then used to conduct a risk assessment having applied the matrix method so that the results can be utilized in risk assessment during the stages of utility tunnel planning, design, and construction, while also serving as a data reference.

Application of risk analysis and assessment considering tunnel stability and environmental effects in tunnel design (터널 안정성 및 환경성을 고려한 위험도 평가기법의 적용)

  • Kim, Young-Geun;Kim, Do-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Recently, because of the various factors by uncertainty of underground, the risks in tunnelling have been occurred increasingly. Therefore, it is very important to estimate and control the risks considering geotechnical conditions for tunnel stability and environmental problems by tunnel construction. In this study, the risk analysis for tunnel stability was carried out by classifying the risk factors such as ground support capacity, ground settlement, the inflow of groundwater into the tunnel and the damage by the earthquake. Also, the risk assessment for the environmental problems was performed by calculating the vibration and noise by blasting and the drawdown of the groundwater level caused by tunnel construction. Each risk factor was evaluated quantitatively based on the probabilistic and statistic technique, then it was analyzed the distribution characteristic along overall tunnel site. Finally, it was evaluated that how much each risk factor influences on the construction cost with a period for tunnel construction, so it is possible to perform reasonable tunnel design which was capable of minimizing the risks in the tunnel construction.

  • PDF

A Study on the Behavior of Concrete floors with Over-break in Railroad Tunnel (여굴깊이에 따른 철도터널 바닥 콘크리트의 거동에 관한 연구)

  • Yang, Joo-Kyoung;Kim, Hyo-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.101-107
    • /
    • 2017
  • Over-break, which is excavated larger than planned line at tunnel excavation, is inevitable due to the nature of blasting. But regarding the bottom of the foundation, most of the domestic ordering organizations pay only 10 cm thick filled concrete when pouring concrete due to over-break. In accordance, the construction cost will increase greatly if all the depths of the designed over-break are filled only with concrete. When tunnel excavation occurs, concrete filling of 18 MPa(T = 100 mm) and 150 mm~237 mm auxiliary concrete layer and 240 mm concrete track(TCL) are applied to the upper part. The concrete is installed in an excessive amount of about 600 mm between the lower part of the rail and the tunnel rock bed. Therefore, in this study, it is necessary to analyze the concrete crack structure according to the depth of the existing tunnel and the modified tunnel section, and to evaluate the adequacy of the required thickness of the tunnel floor concrete for securing the crack stability of the concrete.

Case study on design and construction for cross-connection tunnel using large steel pipe thrust method in soil twin shield tunnels underneath airport (공항하부 토사 병설 쉴드터널에서 대구경 강관추진에 의한 횡갱 설계/시공사례 연구)

  • Ahn, Chang-Yoon;Park, Duhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.325-337
    • /
    • 2021
  • On the road and rail tunnels, the evacuation pathway and facilities such as smoke-control and fire suppression system are essential in tunnel fire. In the long twin tunnels, the cross-connection tunnel is usually designed to evacuate from the tunnel where the fire broke out to the other tunnel. In twin shield tunnels, the segment lining has to be demolished to construct the cross-connection tunnel. Considering the modern shield TBM is mostly the closed chamber type, the exposure of underground soil induced by removal of steel segment lining is the most danger construction step in the shield tunnel construction. This case study introduces the excavation method using the thrust of large steel pipe and reviews the measured data after the construction. The large steel pipe thrust method for the cross-connection tunnel can stabilize the excavated face with the two mechanisms. Firstly, the soil in front of excavated face is cylindrically pre-supported by the large steel pipe. Secondly, the excavated face is supported by the plugging effect caused by the soil pressed into the steel pipe. It was reviewed that the large steel pipe thrust method in the cross-connection tunnel is enough to secure the construct ability and stability in soil from the measurement results about the deformation and stress of steel pipe.