• Title/Summary/Keyword: 터널 강관보강 메커니즘

Search Result 6, Processing Time 0.022 seconds

A Numerical Study on the Behavior of Steel Pipes in Umbrella Arch Method (Umbrella Arch 공법 적용시 강관의 거동에 관한 수치해석적 연구)

  • 차민웅;이승도;문현구
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • The effectiveness of UAM is generally accepted, but there has not been much rigorous study on UAM and its mechanical support mechanism is yet to be established. Also, most of UAM installations depend on empirical judgement rather than on engineering knowledge. In this study, an attempt to confirm the support effects and to understand the support mechanism of UAM has been made by analyzing the mechanical behavior of umbrella pipes installed in various ground conditions. The effects of overburden thickness, pipe size, overlap length and the placement of steel arch are studied using a three-dimensional finite element method. From the numerical parametric study, the support mechanism of UAM has been confirmed by analyzing the structural forces in the umbrella pipes due to the excavation.

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.

Reduced model experiment to review applicability of tunnel pillar reinforcement method using prestress and steel pipe reinforcement grouting (프리스트레스 및 강관보강 그라우팅을 이용한 터널 필라부 보강공법의 적용성 검토를 위한 축소모형 실험)

  • Kim, Yeon-Deok;Lee, Soo-Jin;Lee, Pyung-Woo;Yun, Hong-Su;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.495-512
    • /
    • 2022
  • Due to the concentration of population in the city center, the aboveground structures are saturated, and the development of underground structures becomes important. In addition, it is necessary to apply the reinforcement construction method for the pillar part of the adjacent tunnel that can secure stability, economy, and workability to the site. In this study, the tunnel pillar reinforcement method using prestress and grouting was reviewed. There are various reinforcement methods that can compensate for the problems of the side tunnel, but as the tunnel pillar construction method using prestress and grouting is judged to be excellent in field applicability, stability, and economic feasibility, it is necessary to review the theoretical and numerical analysis of the actual behavior mechanism. Therefore, a scaled-down model experiment was conducted. The reduced model experiment was divided into PC stranded wire + steel pipe reinforcement grouting + prestress (Case 1), PC strand + steel pipe reinforcement grouting (Case 2), and no reinforcement (Case 3), and the displacement of the pillar and the earth pressure applied to the wall were measured. Through experiments, it was confirmed that the PC stranded wire + steel pipe reinforcement grouting + prestress method is the most excellent reinforcement method among various construction methods. It was judged that it could be derived.

Case study on design and construction for cross-connection tunnel using large steel pipe thrust method in soil twin shield tunnels underneath airport (공항하부 토사 병설 쉴드터널에서 대구경 강관추진에 의한 횡갱 설계/시공사례 연구)

  • Ahn, Chang-Yoon;Park, Duhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.325-337
    • /
    • 2021
  • On the road and rail tunnels, the evacuation pathway and facilities such as smoke-control and fire suppression system are essential in tunnel fire. In the long twin tunnels, the cross-connection tunnel is usually designed to evacuate from the tunnel where the fire broke out to the other tunnel. In twin shield tunnels, the segment lining has to be demolished to construct the cross-connection tunnel. Considering the modern shield TBM is mostly the closed chamber type, the exposure of underground soil induced by removal of steel segment lining is the most danger construction step in the shield tunnel construction. This case study introduces the excavation method using the thrust of large steel pipe and reviews the measured data after the construction. The large steel pipe thrust method for the cross-connection tunnel can stabilize the excavated face with the two mechanisms. Firstly, the soil in front of excavated face is cylindrically pre-supported by the large steel pipe. Secondly, the excavated face is supported by the plugging effect caused by the soil pressed into the steel pipe. It was reviewed that the large steel pipe thrust method in the cross-connection tunnel is enough to secure the construct ability and stability in soil from the measurement results about the deformation and stress of steel pipe.

Tunnel pillar reinforcement effect using PC stranded wire and groutings (PC강연선 및 그라우팅을 이용한 터널 필라부 보강효과)

  • Yeon-Deok Kim;Soo-Jin Lee;Pyung-Woo Lee;Hong-Su Yun;Sang-Hwan Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.43-63
    • /
    • 2023
  • With the concentration of the population in the city center and the saturation of the structures on the ground, the development of the underground structures becomes important and the construction of an adjoining tunnel that can reduce the overall problems is respected. In addition, it is necessary to apply the reinforcement construction method for the pillar part of the adjacent tunnel that can secure stability, economy and workability of the site. In this study, the tunnel pillar reinforcement method using prestress and grouting was reviewed. There are various reinforcement methods that can compensate for the problems of the side tunnel, but as the tunnel pillar construction method using prestress and grouting is judged to be excellent in field applicability, stability and economic feasibility, theoretical and numerical analysis of the actual behavior mechanism are conducted. Numerical analysis is divided into PC stranded wire + steel pipe reinforcement grouting + prestress (Case 1), pillar part tie bolt reinforcement (Case 2), pillar part non-reinforcement (Case 3) under the same ground conditions, and the maximum value of the celling displacement, internal displacement, and member force, the stability was confirmed. Through numerical analysis, it was confirmed that Case 1 which reinforced the PC stranded wire, was the best construction method and if it is verified and supplemented through field experiments later, it will be possible to derive superior results in terms of displacement control and member force than the currently applied reinforcement method was judged.

A study on the field tests and development of quantitative two-dimensional numerical analysis method for evaluation of effects of umbrella arch method (UAM 효과 평가를 위한 현장실험 및 정량적 2차원 수치해석기법 개발에 관한 연구)

  • Kim, Dae-Young;Lee, Hong-Sung;Chun, Byung-Sik;Jung, Jong-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2009
  • Considerable advance has been made on research on effect of steel pipe Umbrella Arch Method (UAM) and mechanical reinforcement mechanism through numerical analyses and experiments. Due to long analysis time of three-dimensional analysis and its complexity, un-quantitative two-dimensional analysis is dominantly used in the design and application, where equivalent material properties of UAM reinforced area and ground are used, For this reason, development of reasonable, theoretical, quantitative and easy to use design and analysis method is required. In this study, both field UAM tests and laboratory tests were performed in the residual soil to highly weathered rock; field tests to observe the range of reinforcement, and laboratory tests to investigate the change of material properties between prior to and after UAM reinforcement. It has been observed that the increase in material property of neighboring ground is negligible, and that only stiffness of steel pipe and cement column formed inside the steel pipe and the gap between steel pipe and borehole contributes to ground reinforcement. Based on these results and concept of Convergence Confinement Method (CCM), two dimensional axisymmetric analyses have been performed to obtain the longitudinal displacement profile (LDP) corresponding to arching effect of tunnel face, UAM effect and effect of supports. In addition, modified load distribution method in two dimensional plane-strain analysis has been suggested, in which effect of UAM is transformed to internal pressure and modified load distribution ratios are suggested. Comparison between the modified method and conventional method shows that larger displacement occur in the conventional method than that in the modified method although it may be different depending on ground condition, depth and size of tunnel, types of steel pipe and initial stress state. Consequently, it can be concluded that the effect of UAM as a beam in a longitudinal direction is not considered properly in the conventional method.