• Title/Summary/Keyword: 터널붕괴

Search Result 171, Processing Time 0.023 seconds

Geotechnical characteristics of the collapsed $\bigcirc\bigcirc$tunnel slope in Yeosu-Suncheon area (여수-순천 도로확장공사 구간 $\bigcirc\bigcirc$터널 붕괴사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jeong-Yup;Rhee, Jong-Hyun;Kim, Seung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.848-857
    • /
    • 2008
  • In September 2007, the collapses of slopes and landslides are happened at Jeonlanamdo due to heavy rains accompanied with Typoon "Nari". The study area is the tunnel portal slope in new road construction site. This slope consists of pyroclastic rocks and has lots of faults. Particularly, the residual soils of the slope is deteriorated with yellowish mudstone layer as a results of chemical and physical weathering. This has a variety of swelling clay minerals and might be moved easily down at the gentle terrain. The inner factor of $\bigcirc\bigcirc$tunnel portal slope's collapse is the geological weak zone, the convergent topography, the inferiority of drainage and the heavy rain act on the failure as direct trigger.

  • PDF

The Sensitivity Analysis on Failure Parameter of Adjacent Twin Tunnel Using Model Tests (근접 병설터널 모형실험을 통한 붕괴인자 민감도 분석)

  • Han, Yeon-Jin;Shim, Seung-Bo;Choi, Yong-Kyu;Kim, Gun-Ho;Chang, Ock-Sung;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.585-594
    • /
    • 2009
  • In this present study, to performed the model test and estimated the behavior characteristics of twin tunnel in accordance with the variation of the whole failure parameters which is the strength of the ground, distance of tunnel, angle of the joint, installation of tension bolts and the blasting load. To carry out the numerical analysis for verification of model test results and analyze the sensitivity on failure parameters using model test and numerical analysis results. Based on sensitivity analysis results, to propose the most habitually failure parameters in tunnel scale model test.

  • PDF

Technical lessons learnt from the case history of tunnel collapses (터널 붕괴사례로 부터의 기술적 교훈)

  • Shin, Hyu-Soung;Kwon, Young-Cheul;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.835-844
    • /
    • 2009
  • In this study, a database composed by 46 cases of tunnel collapses has been built up. Based on the database, comprehensive data analysis is carried out, providing us a number of the technical lessons, which can be considered in future design and construction to minimize possibility of tunnel collapse disaster. For making a better understanding, the technical lessons are given in two divisions: mountain tunnel and urban tunnel. Tunnel collapses taking place in the former tunnel are generally due to bad discontinuity condition of jointed rock mass. Otherwise, urban tunnel has weak condition generally on ground water and weathering of ground. Most of technical comments given in this paper are made based on the cases of tunnel collapses only used in this study, so that the comments seems to be hard to be available to all the tunnelling cases. However, the comment should be valuable technical lessons for tunnel engineers to consider in tunnel design or construction.

  • PDF

Measurement of Joint-Orientation and Monitoring of Displacement in Tunnel using 3D Laser Scanning System (3차원 레이저 스캐닝 시스템을 이용한 불연속면의 방향성 측정과 터널 변위 모니터링)

  • Shon, Ho-Woong;Oh, Seok-Hoon;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.47-62
    • /
    • 2006
  • More than 70% of Korean Peninsula is consisted of mountains, so that lots of roads, rail-roads and tunnel,which play a pivotal role in the industry activity, are existed along the rock-slope and in the rock-mass. Thus,it is urgent that tegration of management system through the optimum survey and design of rock-slope excavation, proper stabilization method and database of rock-slope. However, conventional methods have shortcoming with the economy of survey time and human resources, and the overcome of difficulties of approach to the in-situ rock-slope. To overcome the limitation of conventional method, this paper proposed the development of remote measurement system using Terrestrial Laser Scanning System. The method using Terrestrial 3D Laser Scanning System, which can get 3D spatial information on the rock-slope and2)Dept. Geosystem Engineering, Kangwon National University, Korea tunnel, has an advantage of reduction of measurement time and the overcome of difficulties of approach to the in-situ rock-slope/dam/tunnel. In the case of rock-slope, through the analysis of 3D modeling of point-cloud by Terrestrial Laser Scanning System, orientation of discontinuity, roughness of joint surface, failure shape and volume were successively achieved. in the case of tunnel face, through reverse-engineering, monitoring of displacement was possible.

  • PDF

Prediction of the Fractures at Inexcavation Spaces Based on the Existing Data (터널의 굴착면 전반부에 분포하는 절리의 예측)

  • Hwang, Sang-Gi
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.643-648
    • /
    • 2014
  • Understanding of fracture networks and rock mass properties during tunnel construction is extremely important for the prediction of dangers during excavation, and for deciding on appropriate excavation techniques and support. However, rapid construction process do not allow sufficient time for surveys and interpretations for spatial distributions of fractures and rock mass properties. This study introduces a new statistical approach for predicting joint distributions at foreside of current excavation face during the excavation process. The proposed methodology is based on a cumulative space diagram for joint sets. The diagram displays the cumulative spacing between adjacent joints on the vertical axis and the sequential position of each joint plotted at equally spaced intervals on the horizontal axis. According to the diagram, the degree of linearity of points representing the regularity of joint spacing; a linear trend of the points indicates that the joints are evenly spaced, with the slope of the line being directly related to the spacing. The linear points which are stepped indicates that the fracture set show clustered distribution. A clustered pattern within the linear group of points indicates a clustered joint distribution. Fractures surveyed from an excavated space can be plotted on this diagram, and the diagram can then be extended further according to the plotted diagram pattern. The extension of the diagram allows predictions about joint spacing in areas that have not yet been excavated. To test the model, we collected and analyzed data during excavation of a 10-m-long tunnel. Fractures in a 3-m zone behind the excavation face were predicted during the excavation, and the predictions were compared with observations. The methodology yielded reasonably good predictions of joint locations.

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.

Risk assessment for development of consecutive shield TBM technology (연속굴착형 쉴드 TBM 기술 개발을 위한 리스크 평가)

  • Kibeom Kwon;Hangseok Choi;Chaemin Hwang;Sangyeong Park;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.303-314
    • /
    • 2024
  • Recently, the consecutive shield tunnel boring machine (TBM) has gained attention for its potential to enhance TBM penetration rates. However, its development requires a thorough risk assessment due to the unconventional nature of its equipment and hydraulic systems, coupled with the absence of design or construction precedents. This study investigated the causal relationships between four accidents and eight relevant sources associated with the consecutive shield TBM. Subsequently, risk levels were determined based on expert surveys and a risk matrix technique. The findings highlighted significant impacts associated with collapses or surface settlements and the likelihood of causal combinations leading to misalignment. Specifically, this study emphasized the importance of proactive mitigation measures to address collapses or surface settlements caused by inadequate continuous tail void backfill or damaged thrust jacks. Furthermore, it is recommended to develop advanced non-destructive testing technology capable of comprehensive range detection across helical segments, to design a sequential thrust jack propulsion system, and to determine an optimal pedestal angle.

A Theoretical Study on the Colloid-facilitated Radionuclide Transport with Decay Chain in the Fractured Rock (균열암반에서 방사성 붕괴사슬과 콜로이드를 동반한 방사성 핵종의 이동에 관한 이론적 연구)

  • 박진백;황용수;강철형
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.20-32
    • /
    • 2003
  • To understand the behavior of migration of contaminants in a fractured porous medium is a key to assure the overall safety of a potential radwaste repository. The feasible retention mechanism of contaminant transport in a tinctured medium are sorption of contaminants on solid surface and matrix diffusion of contaminants from a fracture into an adjacent porous medium. The acceleration mechanisms are the migration of contaminants in the form of pseudo-colloids and the limit of a volume f3r matrix diffusion. In this paper, the effects of these two acceleration mechanisms are studied mathematically, then semi-analytically computed by the application of the Talbot theorem and verified. Results indicate that the acceleration processes cannot be neglected in the modeling of contaminant transport in a fractured porous medium.

A Case Study on the Stability Analysis of a Cutting Slope Composed of Weathered Granite and Soil (화강풍화암 및 풍화토층 지역 깍기 비탈면의 안정성 검토 사례 연구)

  • Han, Kong-Chang;Ryu, Dong-Woo;Cheon, Dae-Sung;Hong, Eun-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.289-299
    • /
    • 2008
  • Based on the case study on the causes for the failure of cutting slope composed of weathered rock and soil, the factors influencing the design of a cutting slope have been examined, This type of rock and soil is widely distributed on the region whose parent rock is granite. To analyze the stability of the cutting slope, the following series of progress has been conducted: (1) ground characterization by geological survey and ground investigation, (2) the safety factor examination by limit equilibrium analysis and numerical analysis and (3) the comparison and analysis of rainfall and failure history. As a result, the main factors to cause the failure is determined to be the decrease of shear strength in the upper parts whose ground condition is weakened during localized heavy rain. Moreover, the analysis indicates the failure is also closely related to the groundwater inflow path. On the base of this investigation, a reinforcement method is proposed to ensure the stability of the cutting slope.

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.