• Title/Summary/Keyword: 터널링 전기 용량

Search Result 6, Processing Time 0.022 seconds

AC Voltage and Frequency Dependence in Tunneling Magnetoresistance Device (터널링 자기저항 소자의 교류 전압 및 주파수 의존성 연구)

  • Bae, Seong-Cheol;Yoon, Seok Soo;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.201-205
    • /
    • 2016
  • In this report, we measured the impedance spectrum in TMR device, and the relaxation behavior of the real and imaginary impedance spectrum was analyzed by using the equilibrant circuit of tunneling capacitance ($C_T$) and tunneling resistance ($R_T$). The relaxation frequency was increased with AC voltage in both the parallel and antiparallel alignment of two magnetic layers. The $R_T$ with AC voltage showed the typical bias voltage dependence. However, the $C_T$ showed large value than the expected geometrical capacitance. The huge increase of $C_T$ was affecting as a limiting factor for the high speed operation of TMR devices. Thus, the supercapacitance of $C_T$ should be considered to design the high speed TMR devices.

Junction Capacitance Dependence of Response Time for Magnetic Tunnel Junction (터널링 자기저항 소자의 접합면 정전용량에 따른 전기적 응답특성)

  • Park, S.Y.;Choi, Y.B.;Jo, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.68-72
    • /
    • 2002
  • In this research, the effects of capacitance to the access time were studied at the junction area of tunneling magnetoresistance when these were used as memory devices. These results were obtained by applying electric signal input and magnetic field was not used. We applied bipolar square waves of 1MHz to the MTJ samples to obtain the results and time constant ($\tau$) calculated by observing wave responses utilizing an oscilloscope. And time constant was compared with junction area. Each part of MTJ sample, such as electrical pad, lead and contact area, was modeled as an electrical equivalent circuit based on experimental results. For the 200㎛$\times$200㎛ cell, junction capacitance was 90 pF. Also, measurement and simulation results were compared, which showed those similarity.

$Si_3N_4$/HfAlO 터널 절연막을 이용한 나노 부유 커패시터의 전기적 특성 연구

  • Lee, Dong-Uk;Lee, Hyo-Jun;Kim, Dong-Uk;Kim, Eun-Gyu;Yu, Hui-Uk;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.279-279
    • /
    • 2011
  • 나노 입자를 이용한 비휘발성 메모리 소자의 전기적 특성 향상을 위하여 일함수가 Si 보다 큰 금속, 금속산화물, 금속 실리사이드 나노입자를 이용한 다양한 형태의 메모리 구조가 제안되어져 왔다.[1] 특히 이와 같은 나노 부유 게이트 구조에서 터널 절연막의 구조를 소자의 동작 속도를 결정하는데 이는 터널링 되어 주입되는 전자의 확률에 의존하기 때문이다. 양자 우물에 국한된 전하가 누설되지 않으면서 주입되는 전자의 터널링 확률을 증가시키기 위하여, dielectric constant 와 barrier height를 고려한 다양한 구조의 터널 절연막의 형태가 제안 되었다.[2-3] 특히 낮은 전계에서도 높은 터널링 확률은 메모리 소자의 동작 속도를 향상시킬 수 있다. 본 연구에서는 n형 Si 기판위에 Si3N4 및 HfAlO를 각각 1.5 nm 및 3 nm 로 atomic layer deposition 방법으로 증착하였으며 3~5 nm 지름을 가지는 $TiSi_2$$WSi_2$ 나노 입자를 형성한 후 컨트롤 절연막인 $SiO_2$를 ultra-high vacuum sputtering을 사용하여 20 nm 두께로 형성 하였다. 마지막으로 $200{\mu}m$ 지름을 가지는 Al 전극을 200 nm 두께로 형성하여 나노 부유 게이트 커패시터를 제작하였다. 제작된 소자는 Agilent E4980A precision LCR meter 및 HP 4156A precision semiconductor parameter analyzer 를 사용하여 전기용량-전압 및 전류-전압 특성분석을 하여 전하저장 특성 및 제작된 소자의 터널링 특성을 확인 하여 본 연구를 통하여 제작된 나노 부유 게이트 커패시터 구조가 메모리 소자응용이 가능함을 확인하였다.

  • PDF

Electrostatic discharge simulation of tunneling magnetoresistance devices (터널링 자기저항 소자의 정전기 방전 시뮬레이션)

  • Park, S.Y.;Choi, Y.B.;Jo, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • Electrostatic discharge characteristics were studied by connecting human body model (HBM) with tunneling magnetoresistance (TMR) device in this research. TMR samples were converted into electrical equivalent circuit with HBM and it was simulated utilizing PSPICE. Discharge characteristics were observed by changing the component values of the junction model in this equivalent circuit. The results show that resistance and capacitance of the TMR junction were determinative components that dominate the sensitivity of the electrostatic discharge(ESD). Reducing the resistance oi the junction area and lead line is more profitable to increase the recording density rather than increasing the capacitance to improve the endurance for ESD events. Endurance at DC state was performed by checking breakdown and failure voltages for applied DC voltage. HBM voltage that a TMR device could endure was estimated when the DC failure voltage was regarded as the HBM failure voltage.

$Al_2O_3/HfO/Al_2O_3$ 터널장벽 $WSi_2$ 나노 부유게이트 커패시터의 전기적 특성

  • Lee, Hyo-Jun;Lee, Dong-Uk;Han, Dong-Seok;Kim, Eun-Gyu;Yu, Hui-Uk;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.191-192
    • /
    • 2010
  • 높은 유전상수를 가지는 터널 장벽물질 들은 플래쉬메모리 및 나노 부유게이트 메모리 소자에서 터널의 두께 및 밴드갭 구조의 변형을 통하여 단일층의 $SiO_2$ 터널장벽에 비하여 동작속도를 향상시키고 누설전류를 줄이며 전하보존 특성을 높여줄 수 있다.[1-3] 본 연구에서는 $Al_2O_3/HfO/Al_2O_3$구조의 고 유전체 터널장벽을 사용하여 $WSi_2$ 나노입자를 가지게 되는 metal-oxide-semiconductor(MOS)구조의 커패시터를 제작하여 전기적인 특성을 확인하였다. p형 (100) Si기판 위에 $Al_2O_3/HfO/Al_2O_3$ (AHA)의 터널장벽구조를 원자층 단일 증착법을 이용하여 $350^{\circ}C$에서 각각 2 nm/1 nm/3 nm 두께로 증착시킨 다음, $WSi_2$ 나노입자를 제작하기 위하여 얇은 $WSi_2$ 박막을 마그네트론 스퍼터링법으로 3 - 4 nm의 두께로 증착시켰다. 그 후 $N_2$분위기에서 급속열처리 장치로 $900^{\circ}C$에서 1분간의 열처리과정을 통하여 AHA로 이루어진 터널 장벽위에 $WSi_2$ 나노입자들이 형성할 수 있었다. 그리고 초 고진공 마그네트론 스퍼터링장치로 $SiO_2$ 컨트롤 절연막을 20 nm 증착하고, 마지막으로 열 증기로 200 nm의 알루미늄 게이트 전극을 증착하여 소자를 완성하였다. 그림 1은 AHA 터널장벽을 이용한 $WSi_2$ 나노 부유게이트 커패시터 구조의 1-MHz 전기용량-전압 특성을 보여준다. 여기서, ${\pm}3\;V$에서 ${\pm}9\;V$까지 게이트전압을 점차적으로 증가시켰을 때 메모리창은 최대 4.6 V로 나타났다. 따라서 AHA의 고 유전체 터널층을 가지는 $WSi_2$ 나노입자 커패시터 구조가 차세대 비 휘발성 메모리로서 충분히 사용가능함을 보였다.

  • PDF

스퍼터링 및 후 열처리 기법에 의한 V3Si 나노입자 형성과 비휘발성 메모리소자 응용

  • Kim, Dong-Uk;Lee, Dong-Uk;Lee, Hyo-Jun;Jo, Seong-Guk;Kim, Eun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.301-301
    • /
    • 2011
  • 최근 고밀도 메모리 반도체의 재료와 빠른 응답을 요구하는 나노입자를 이용한 비휘발성 메모리 소자의 제작에 대한 연구가 활발히 진행되고 있다. 그에 따른 기존의 플래쉬 메모리가 가지는 문제점을 개선하기 위해서 균일하고 규칙적으로 분포하는 새로운 나노소재의 개발과 비휘발성, 고속 동작, 고집적도, 저전력 소자의 공정기술이 요구되고 있다. 또한 부유게이트에 축적되는 저장되는 전하량을 증가시키기 위한 새로운 소자구조 개발이 필요하다. 한편, 실리 사이드 계열의 나노입자는 금속 나노입자와 달리 현 실리콘 기반의 반도체 공정에서 장점을 가지고 있다. 따라서 본 연구에서는 화합물 중에서 비휘발성 메모리 장치의 전기적 특성을 향상 시킬 수 있는 실리사이드 계열의 바나듐 실리사이드(V3Si) 박막을 열처리 과정을 통하여 수 nm 크기의 나노입자로 제작하였다. 소자의 제작은 p-Si기판에 실리콘산화막 터널층(5 nm 두께)을 건식 산화법으로 성장 후, 바나듐 실리사이드 금속박막을 RF 마그네트론 스퍼터 시스템을 이용하여 4~6 nm 두께로 터널 베리어 위에 증착하고, 그 위에 초고진공 마그네트론 스퍼터링을 이용하여 SiO2 컨트롤 산화막층 (20 nm)을 형성시켰다. 여기서 V3Si 나노입자 형성을 위해 급속 열처리법으로 질소 분위기에서 800$^{\circ}C$로 5초 동안 열처리하여 하였으며, 마지막으로 열 기화 시스템을 통하여 알루미늄 전극(직경 200 ${\mu}m$, 두께 200 nm)을 증착하여 소자를 제작하였다. 제작된 구조는 금속 산화막 반도체구조를 가지는 나노 부유게이트 커패시터이며, 제작된 시편은 투사전자현미경을 이용하여 나노입자의 크기와 균일성을 확인했다. 소자의 전기적인 측정을 E4980A capacitor parameter analyzer와 Agilent 81104A pulse pattern generator system을 이용한 전기용량-전압 측정을 통해 전하저장 효과 및 메모리 동작 특성들을 분석하고, 열처리 조건에 따라 형성되는 V3Si 의 조성을 엑스선 광전자 분광법을 이용하여 확인하였다.

  • PDF