• Title/Summary/Keyword: 터널단면

Search Result 385, Processing Time 0.023 seconds

An evaluation of influence factors based on the limit state design-AASHTO LRFD for structural analysis of shield tunnel segment lining (한계상태설계법-AASHTO LRFD를 적용한 쉴드터널 세그먼트 라이닝의 구조해석 영향인자 평가)

  • Kim, Yang-Woon;Kim, Hong-Moon;Kim, Hyun-Su;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.99-118
    • /
    • 2018
  • Recently, the limit state design method in the design of the structure is in global trend, but it is limited to a few structures in Korea. Since the introduction of the limit state design method has recently been attempted for tunnels, which are the main underground structures, it is surely necessary to understand the latest limit state design method. Therefore, based on the recently published AASHTO LRFD Road Tunnel Design and Construction Guide Specification (2017), structural load factors and load combinations were reviewed, and various factors which should be applied for the review of structures have been analyzed. In this study, utility tunnel section and subway tunnel sections used in Korea were analyzed by the limit state design method, and we have analyzed the direction of application of limit state design method through studying the tendency of member force by various influential factors such as ground conditions, load modifier and joint stiffness.

A study on the reduction of concrete lining re-bar according to the tunnel design factors (터널 설계인자 평가에 따른 콘크리트 라이닝 철근량 절감에 관한 연구)

  • Kang, Si-On;Lim, Young-Duck;Shin, Jeong-Ho;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.197-209
    • /
    • 2018
  • This paper presents a study on the reduction of concrete lining re-bar according to the tunnel design factors. The design of the concrete lining increases the reinforcing re-bar according to the application of excessive load, and the economical efficiency is reduced. In order to improve the economical efficiency of tunnel construction, rational standards are required for the design factors of concrete lining. Therefore, this research analyzed the characteristics and problems of the design factors applied to the design of concrete lining. Also, the economical review of the concrete lining for design factor application was compared with the amount of reinforcing re-bar calculated from the section design using numerical analysis. The results show that the amount of re-bar is varied according to the design factors. That is, the required amount for re-bar in the tunnel concrete lining could be reduced in the design stage. The results of this study may be useful for economic design of concrete lining in the future.

Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel (수중운항체에 대한 해중터널의 충돌해석)

  • Hong, Kwan-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.369-377
    • /
    • 2014
  • In this paper, to recognize the collision behavior between a submerged floating tunnel(SFT) and underwater navigation vessel(UNV), both structures are modeled and analyzed. The SFT of collision point is modeled tubular section using concrete with steel lining. The other part of SFT is modeled elastic beam elements. Mooring lines are modeled as cable elements with tension. The under water navigation vessel is assumed 1800DT submarine and its total mass at collision is obtained with hydrodynamic added mass. The buoyancy force on SFT is included in initial condition using dynamic relaxation method. The buoyancy ratio (B/W) and the collision speed are considered as the collision conditions. As results, energy dissipation is concentrated on the SFT and that of the UNV is minor. Additionally, the collision behaviors are greatly affected by B/W and the tension of mooring lines. Especially, the collision forces are shown different tendency compare to vessel collision force of current design code.

A Numerical Study on Safety According to the Excavation Step for Large Cross Section Tunnel (대단면 터널굴착에 있어서 굴착순서에 따른 수치해석적 안정성 검토)

  • Jung, Hee-sun;Yoon, Ji-sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.335-341
    • /
    • 2005
  • In construction of a large cross section NATM tunnel, to keep the tunnel face stability by the ground itself bench cut method is commonly used. In order to necessity of partial face excavation method, we have to look for more enhanced method that can maintain better stress intensity. This paper presents a stress distribution of the Center Diaphragm Method from the partial face excavation methods, with the numerical analysis, and induced the optimal face distance, which is minimizing stress concentration and the optimal excavation step. Commerical 3 dimensional continuum analyzing FLAC-3D Ver. 2.1 program is used for the analysis. Analyses were performed to investigate ground behavior for tunnels with variable bench-length varying from 2m to 40m.

  • PDF

Reliability analysis for design of shield tunnel segment lining under earthquake load (쉴드 터널 세그먼트 라이닝의 내진설계를 위한 신뢰성해석)

  • Park, Young-Bin;Kim, Do;Byun, Yosep;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.249-259
    • /
    • 2020
  • Design criteria for limit state design of underground structures have already been published overseas, and research has been conducted to revise the design method in Korea. In order to estimate the probability of failure under seismic load, the probability variable should be considered in the reliability analysis. In this study, the failure probability of the existing shield tunnel segment lining design was calculated by applying the coefficient of variation (COV) for the earth pressure and the seismic load effect in consideration of the statistical characteristics of the domestic ground properties. Based on the results of calculating the reliability index (β) from the calculated probability of failure and analyzing the reliability index according to the change in the load factor and the results of domestic and foreign research, the target reliability index (βT) during earthquakes of shield tunnel segment lining is analyzed to be "2.3", it was proposed as the target reliability index for the design of the limit state under seismic load.

A study on the fire smoke diffusion delay strategy in a great depth underground double deck tunnel junction (대심도 복층터널 교차로 화재연기 확산지연 방안 연구)

  • Shin, Tae-Gyun;Moon, Jung-Joo;Yang, Yong-Won;Lee, Yun-Taek;Han, Jae-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.115-126
    • /
    • 2019
  • Recently, in order to solve the traffic congestion in urban areas and to improve the peripheral environment, research on the design and construction technology development of great depth underground double-deck tunnel is under way by using the underground space in the urban area. The network type double-deck tunnel is in the form of an intersection with a small cross section and a steep slope as per construction at the base of a flatland, so that the fire smoke spreads rapidly in case of fire, which is expected to cause damage of human life. Therefore, this study is analyzed the delay effect of fire smoke diffusion according to the installation and non - installation of delay system for fire smoke diffusion at the intersection. Fire fumes were delayed up to 270 seconds when the delay system for fire smoke diffusion was installed at the intersection and it is analyzed that the greater the operating area of the delay system for fire smoke diffusion, the more preventable the damage of human life of the intersection.

A New Design Method of Reinforcement Ahead of a Tunnel Face by using Convergence-confinement Method and Load-transfer Approach (내공변위-제어법과 새로운 하중전이함수를 이용한 터널 천단보강공 설계)

  • In, Sung-Yoon;Jeong, Sang-Seom;Kim, Yong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.81-90
    • /
    • 2009
  • In this study the behavior of a steel pipe structure used as an auxiliary method was evaluated by the convergence-confinement method and load-transfer approach, and the result was compared with that of numerical approach and in-situ measured data. As calculated partially increased displacement of the installed pipe to obtain the tunnel displacement. A numerical analysis simulate well the general behavior of measured displacement of tunnel crown. Through this study, it was found that the proposed procedure produces conservative result so that it can be applied in preliminary design of the auxiliary method of tunnel face.

Performance evaluation of high-performance lattice girder using numerical analysis (수치해석을 통한 고성능 격자지보재의 성능 평가)

  • Kim, Dong-Gyou;Ahn, Sungyoull
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.897-908
    • /
    • 2019
  • The objective of this study is to evaluate the field support performance of highperformance lattice girder (BK-Lattice Girder) by using numerical analysis. Three types (50, 70, 95-type) of existing and high performance lattice girders were applied to the cross section of highway 2, 3, and 4 lane tunnels to compare the supporting performance. The numerical analysis was the finite element method and the lattice girder was modeled in three dimensions with an elasto-plastic frame. The ground was modeled as a spring receiving only compression. The load was applied as a concentrated load on the central ceiling of the tunnel section. The yield strengths of the lattice girders were determined from the numerical results to compare the supporting performance of lattice girder. In case of 50-type, the yield strengths of high-performance lattice girders were increased by 6.7~10.0% compared with those of the existing lattice girders. In the case of 70-type, the high-performance lattice girders increased yield strengths by 12.1~14.9% than the existing lattice girder. In the case of 95-type, the high-performance lattice girders increased yield strengths by 13.3~20.0% than the existing lattice girder. As a result of numerical analysis, it was considered that the high-performance lattice girder supported better than the existing lattice girder when only the lattice girders were constructed.

Detailed Processing and Analysis on the Single-channel Seismic Data for Site Survey of Daecheon-Wonsando Subsea Tunnel (대천-원산도 해저터널 부지조사를 위한 단일채널 탄성파자료의 정밀 처리 및 분석)

  • Kim, Won-Sik;Park, Keun-Pil;Kim, Hyun-Do;Cheong, Snons;Koo, Nam-Hyung;Lee, Ho-Young;Park, Eui-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.336-348
    • /
    • 2010
  • The Single-channel seismic survey with the source of bubble pulser and drilling survey was carried out in 2008 and 2009 for the site survey of Daecheon-Wonsando area, which was a proposed area of Korea-China subsea tunnel. The goal of this study is to analyze the depth and characteristics of acoustic basement for the stability assessment and tunnel design in this proposed area through combining drilling data with this single-channel seismic data after detailed processing. For this purpose, among the data processing schemes which are usually applied to multi-channel seismic data, we applied the F-K filtering to eliminate the AC(alternating current) noise and the post-stack depth migration to produce depth section. As a result, we verified that the improved depth section could be obtained from single-channel seismic data, and the distribution and characteristics of basement could be analyzed in survey area through the combined analysis with drilling data. However, we could not interpret the detailed structures, fault and fracture zone, due to the quality of bubble pulser source and single-channel data. We expect that those detailed structures can be analyzed when higher resolution seismic data is provided. Therefore, we recommend some items for future seismic survey of subsea tunnel to obtain the high resolution seismic data.

A Study on the Inflow Velocity Reduction Measures in Case of Fire Great Depth Underground Double-Deck Tunnel (대심도 복층터널 화재 시 유입풍속 저감방안 연구)

  • Yang, Yong-Won;Moon, Jung-Joo;Shin, Tae-Gyun
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Recently, frequent traffic congestion has occurred in domestic urban roads. As a solution for downtown traffic congestion in domestic urban roads, plans for great depth underground double-deck tunnels have been made. Great depth underground double-deck tunnels that have been planned for passenger cars, has the structure of a network type; the entry of vehicles is carried out in the underground space. In these network great depth underground double-deck tunnels, the cross section and the height of the tunnel are smaller than the general road tunnel, and the smoke of a fire will propagate faster than the evacuation of tunnel passengers by the action of the traffic-ventilation and casualties are expected. Therefore, in the present study, an attempt was made to prevent the delay system for fire smoke diffusion at the time of a fire in a domestic network great depth underground double-deck tunnel according to the area of the tunnel block during the operation of the delay system for fire smoke diffusion to analyze the effects of reducing the inflow velocity. When the area of the tunnel block was not less than 50%, the effect of reducing about 21% of the wind speed acting on the tunnel was significant. If the area is more than 50%, the diffusion rate of fire smoke was reduced by approximately 21%, which will be useful for a safe evacuation.