• Title/Summary/Keyword: 터널구조물

Search Result 718, Processing Time 0.023 seconds

Influence of Adjacent Structures using Numerical Method during funnel Blasting (터널발파굴착시 수치해석에 의한 구조물의 영향평가)

  • 김학문
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.274-278
    • /
    • 2003
  • The numerical analysis indicated that the vibration response reduced sharply at the three times of tunnel diameter. Visual display of vibration response was possible through 3-D FEM computer program, and displacement of structure, particle velocity were obtained as output. It was found that the vibration velocity was maximum at distance one to two times of tunnel diameter for the given simplified blast loadings. The results of numerical analysis were compared with empirical based predictive equation of blasting. The empirical equation showed a good agreement with 3-D FEM results at a certain range of tunnel depth in this particular type of ground conditions.

  • PDF

Response Analysis of Frame Structures with the Consideration of Tunnel Construction (프레임구조물의 터널시공에 따른 거동분석)

  • Son, Moorak;Park, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.121-127
    • /
    • 2012
  • This paper investigates the response of frame structures with the consideration of tunnel construction (ground loss) conditions. The response of four-story open frame structure and block-infilled frame structures, which are subjected to tunnelling-induced ground movements, has been investigated in different construction (ground loss) conditions using numerical analysis. The open frame structure has been modelled as an elastic structure, while the block-infilled frame structure has been modelled to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of the two different frame structures has been investigated in terms of construction (ground loss) conditions considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in the structures, has been provided in terms of construction (ground loss) conditions using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby frame structures due to tunnelling-induced ground movements.

Case Study on the Impact-Echo Method for Tunnel Safety Diagnosis (터널 안전진단을 위한 충격반향법 사례 연구)

  • Shin, Sung-Ryul;Jo, Cheol-Hyun
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • For the purpose of determining the thickness of concrete lining and detect of the cavity where may be located behind tunnel lining, IE (Impact-Echo) method it effectively useful in the tunnel safety diagnosis and the quality control during the construction. As a part of case study, we applied IE method to various tunnel structure types such as road tunnel and subway tunnel constructed by NATM (New Austrian Tunnelling Method) and ASSM (American Steel Support Method). As tunnel specifications estimated from this method were compared with coring data, design drawing and other survey results, it was very good agreement with each other. In conclusion, we verified that IE method shows an accurate and reliable result. The conventional interpretation of IE method in frequency domain gives only vertical information at a certain point. However, the interpretation using time-frequency analysis and depth section imaging technique from two dimensional profiling surveys can show more reliable information about structure inside.

Response Analysis of Block-Bearing Structure due to Tunnel Excavation in Clay Ground (점토지반에서 터널굴착에 따른 상부 블록구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.175-183
    • /
    • 2014
  • This study investigates the response of structures to tunnelling-induced ground movements in clay ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), and tunnel ground condition (soft clay and stiff clay). Four-story block-bearing structures have been used because the structures can easily be characterized of the extent of damages with crack size and distribution. Numerical parametric studies have been used to investigate of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and tunnel ground condition and provide a relationship chart among them. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in clay ground.

A Study on Standard for State Assessment of Tunnel Structures (터널 구조물의 상태평가 기준에 관한 연구)

  • Oh, Hyuk-Hee;Shin, Yung-Suk;Lee, Jong-Woo;Park, Nam-Seo;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.35-55
    • /
    • 2001
  • Recently, as tunnel structures are getting older and decrepit, many tunnel inspections are carried out for evaluating the tunnel state and safety. But, because there is no exact standard for tunnel state and safety, depending on subjective decision, the new standard to assess the tunnel state is required. The existing standard including mainly the assessment of the state of tunnel lining is not considered the characteristics of tunnel as underground structures. Also, the item of assessment and process of grading and classifying the state of tunnel is not objective and systemetic. In this study, new standard for assessment of tunnel state is presented for improving the problems in evaluating the tunnel state and safety. In the new standard, the new items of assessment including geotechnical condition were selected and graded, the process in classifying the tunnel state is quantitative for objective assessment for tunnel state. This new standard and method is practically used in effective safety inspection and diagnosis and tunnel maintenance.

  • PDF

Stability evaluation of existing subway structure by adjacent excavation in urban tunnelling (도심지 터널 근접시공에 의한 기존 지하철 구조물 안정성 평가)

  • Han, Sangmin;Lee, Donghuk;Park, Duhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.339-357
    • /
    • 2021
  • As the construction of trans infrastructure using the underground tunnel have been rapidly increased, various nearby excavation of existed underground facility including subway structure has been occurred in urban tunnelling. The concern and worry relating to the safety and stability of the existed facility by nearby excavation is becoming the key issues in urban tunnelling. In this study, it was conducted for existed the subway station structure at Seoul subway line which was closely located in the new Dongbuk urban metro railway to determine the behavior characteristics of station structure according to adjacent tunnel construction. Also, it was reviewed the evaluation of the safety zone and excavation method for subway structure. And after a review of damage evaluation, track irregularities and structural calculation by using a numerical analysis, stability of the subway structure according to nearby tunnel excavation was evaluated to be secured. This study is expected to be applied as useful reference in advance if you need to review the effects of existed structure according to nearby construction in complex urban tunnelling.

A Study on the Near Construction Range Considering the Factors Affecting the Stability of Water Tunnel (수로터널 안정성에 미치는 요소를 고려한 근접시공범위에 대한 연구)

  • Mingyu Lee;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.5-12
    • /
    • 2023
  • Recently, due to urban development and expansion, construction plans have been increasing adjacent to existing tunnel structures such as subways, roads, and large pipelines. Structural plans adjacent to existing tunnels have different effects on tunnel stability depending on the construction method, degree of proximity, and location of new structures. In particular, the pressure water tunnel shows a very large difference from other road tunnels and railway tunnels in geotechnical characteristics and operation characteristics. Therefore, it is necessary to review the safety zone due to adjacent construction in consideration of the geotechnical characteristics of the water tunnel and the new sturure construction method. In this study, the existing tunnel safety zone standards were investigated. A stability evaluation performed numerical analysis considering the deterioration of concrete lining in operation and the characteristics of water tunnel. In addition, the impact of vibration caused by pile construction and blasting excavation of new structures was reviewed. Based on this, a pressure water tunnel safety zone was proposed in consideration of adjacent construction.

Numerical Analysis of NDT Using Elastic Stress Waves in Concrete Lining (터널 라이닝내부에서 전파되는 탄성응력파를 이용한 수치해석적 비파괴검사)

  • 김문겸;이재영
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.187-198
    • /
    • 1998
  • 지하구조물의 건전성을 평가하기 위한 비파괴시험으로써 탄성응력파를 이용한 충격반향탐사법을 수치해석적인 방법을 통하여 수행하였다. 즉, 일면만으로 접근 가능한 터널 면에서의 충격가진과 동적응답의 측정으로 이질면을 포함한 내부의 상태를 예측할 수 있다. 연구의 수행은 탄성거동을 하는 매질 내부에서 전파되는 탄성응력파의 특성을 이해하고, 이를 동적 유한요소해석으로 모형화하여 충격반향탐사법을 수치해석적으로 수행한다. 이질재료가 2개의 층을 이루고 있는 경우 표면층의 두께를 쉽게 측정할 수 있었으며, 구조물의 병진운동, 휨운동과 구조물 내에서 다중반사되는 탄성응력파에 의한 복합적인 영향을 받는 터널과 같은 원통형 구조물에서 동적응답의 주파수 특성으로부터 터널라이닝 내부에 형성된 공동의 위치와 크기의 예측이 가능하였다. 수치해석적인 방법과 병행하여 다양한 형태의 경계조건을 가지는 구조물에 대한 충격반향탐사법의 실험을 수행할 경우 실제적인 문제에 적용, 건전성 평가의 지표를 마련할 수 있을 것으로 사료된다.

  • PDF

Seismic Analysis of Tunnel Structures (터널구조물의 내진해석)

  • Lee, In-Mo;An, Dae-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.3-15
    • /
    • 2001
  • Generally, it has been noted that underground structures have a consistent record of suffering much less damage than surface facilities during earthquakes; but it is still necessary to illustrate the dynamic response of tunnel structures subject to earthquake loadings and to provide the appropriate method for the seismic analysis of underground tunnel structures since many types of underground structures have been and will be constructed in countries situated within seismic zones. In this study, first, seismic analyses for underground tunnel structures are performed by using quasistatic analysis method and dynamic analysis method. Second, seismic analyses in tunnel portals are performed by using above methods. The results of seismic analyses for the tunnel structure show that the tunnel structure conforms to ground deformation and that seismic design by using the quasi-static analysis method is more conservative than that by using the dynamic analysis. The results of the dynamic FEM analysis for the tunnel structure show that the simplified 2-D FEM analysis using a sine wave rather than the 3-D FEM analysis can be adopted for seismic analysis. Finally, the results of the dynamic FEM analysis in tunnel portals show that the force acting on the lining is largest near to the tunnel portal when an earthquake wave propagates parallel to tunnel axis.

  • PDF

Investigation on Water Leakage-Induced Tunnel Structure and Ground Responses Using Coupled Hydro-Mechanical Analysis (수리역학 연계해석을 이용한 누수로 인한 터널 구조물 및 지반 거동의 분석)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.265-280
    • /
    • 2023
  • Water leakage in tunnels is a defect that can affect tunnel stability and the ground movement by changing the stress and pore water pressure of the surrounding ground. Long-term or large-scale water leaks may lead to damage of tunnel structure and the surrounding environment, such as tunnel lining instability and ground surface settlement. The present study numerically investigated the effects of water leakage on the structural stability of a tunnel and the ground behavior. The tunnel was assumed to be under undrained conditions for preventing the inflow of the surrounding water and leaks occurred in the concrete lining after completion of the tunnel construction. A coupled hydro-mechanical analysis using a TOUGH-FLAC simulator developed in Python was conducted for assessing the leakage induced-behavior of the tunnel structure and ground under different conditions of the amount and location of water leak. Additionally, the effect of hydro-mechanical coupling terms on the results of coupled response was investigated and discussed.