• Title/Summary/Keyword: 탱크-구조물

Search Result 178, Processing Time 0.021 seconds

축대칭 PC탱크의 유한요소 해석

  • 이이환;김동언
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.981-986
    • /
    • 1995
  • 이 논문의 목적은 축대칭 프리스트레스트 콘크리트 탱크의 시간의존성 유한요소해석법을 제안하는 것이다. 오늘날 PC구조물은 교량, 포장판, 해상구조물, 원자로 격납구조물, 대규모 액체저장용 탱크 등 여러 형태의 구조물에서 그 사용 예를 쉽게 찾아볼 수 있다. 특히 본 논문에서 고려하고자 하는 압력창기나 액체 저장용 탱크의 경우 유체압력 등의 내부압력에 의해 발생하는 균열은 프리 스트레스를 도입함으로써 매우 효과적으로 제어할 수 있기 때문에 상당히 유리한 구조형식이 된다. 그러니 이러한 구조물의 해석과 설계에 있어서 균열의 예측과 더불어 콘크리트의 크리이프, 건조수축 및 PC강재의 리락세이션 등과 같은 시간 의존성 변형으로 인한 프리스트래스의 손실, 여러 단계의 긴장력을 도입함으로써 발생하는 순간변형인 탄성단축 및 이로 인한 긴장력 감소 등을 정확히 계산하는 일은 매우 복잡하고 어려운 일이다. 본 논문에서는 크리이프, 건조수축 및 리락세이션 등과 같은 시간의존성 변형과 순차적으로 다단계의 프리스트레스 도입으로 인한 순간변형 및 탄성단축의 영향을 고려한 축대칭 PC 탱크 구조물의 시간에 따른 거동 및 긴장력의 변화를 유한요소법을 적용하여 해석할 수 있는 해법체계를 정리하고 이를 전산 프로그램화하여, 축대칭 PC탱크 구조물의 시간 의존성 거동에 대한 보다 정밀한 해석을 수행하였다.

  • PDF

Accuracy Improvement of Simplified Liquid Storage Tanks Seismic Design (유체저장탱크 단순화 모델의 정확도 향상을 위한 내진설계변수 산출)

  • Song, Soo-Young;Lee, Kang-Won;Kim, Jun-Hwi;Lim, Yun-Mook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.285-288
    • /
    • 2010
  • 유체저장탱크가 외부로부터 지진과 같은 동적하중을 받게 될 경우 유체와 구조물의 상호작용(Fluid-Structure Interaction)으로 인하여 일반적인 구조물과는 상이한 거동을 보이게 된다. 이러한 복잡한 상호작용을 고려하여 현재 내진 설계에서는 Housner와 Haroun의 이론을 적용한 단순화 모델들이 사용되고 있다. 이들 모델은 유체의 거동을 대류(convective) 성분과 충격(impulsive) 성분으로 구분하여 집중질량으로 단순화 한다. 하지만 점차 대형화되고 있는 유체저장탱크의 정확한 동적 거동 특성을 파악하고, 지진하중과 같은 방향성을 가진 하중에 대한 구조물의 정확한 응답을 해석하려면 단순화 모델의 적용성 검토가 필요하다. 본 연구에서는 지진하중을 받는 유체저장탱크의 동적거동을 집중질량 모델과 3차원 모델을 이용하여 해석하였다. 나아가 해석결과의 차이를 분석하여 단순화 모델의 정확도 향상을 위한 내진설계변수 산출에 관하여 향후 연구방향을 제시하였다.

  • PDF

Shaking Table Test of a Stainless Water Tank with Natural Rubber Bearing (천연고무받침이 설치된 스테인리스 물탱크의 진동대 실험)

  • Kim, Hu-Seung;Oh, Ju;Jung, Hie-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.52-58
    • /
    • 2016
  • Recently, interest in structural stability has increased due to earthquakes. Isolation systems can improve seismic ability without harming the functions and appearance of existing and new constructions, and they have established efficiency in foreign country that have experienced earthquakes. In this study, an isolation system is suggested using a natural rubber bearing (NRB) on a stainless water tank for stability assurance in an earthquake. A shaking table test was carried out to evaluate the seismic capacity of a non-isolated water tank and an isolated tank. Displacement meters in the water tank measured the behavior characteristics of the tanks, which were compared using artificial seismic waves of 0.154 g, 0.231 g, 0.341 g, and 0.348 g with water levels of 0.0 m, 1.5 m, and 2.5 m. At 2.5 m, a decrement effect was generally shown in the isolated water tank, and a bigger displacement occurred in the non-isolated water tank than in the isolated one at water levels of 0.0 m and 1.5 m. It is interpreted that the weight of different water levels affects the decrement effect. If seismic reinforcement is done, the isolated bearing should be designed while considering the fluid storage level.

Analysis of Liquid Sloshing in a Two-Dimensional Elastic Tank (구조물의 탄성을 고려한 2차원 탱크내 유동해석)

  • P.M.,Lee;S.W.,Hong;S.Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.107-116
    • /
    • 1990
  • The liquid sloshing in an elastic tank is a fluid-structure interaction problem. It requires nonlinear analysis to solve the complicated physics involved in the large interaction of fluid-structure, the variation of dynamic characteristics of structure due to hydrodynamic loading, and the distorsion of fluid flow due to structural vibration. In this paper a Lagrangian FEM is introduced to analyze the liquid sloshing in an elastic tank assuming that the elastic wall is one degree of freedom rigid wall. Numerical integration is performed using an implicit-explicit algorithm, which is formed by mixing the predictor-corrector method and the Runge-Kutta 4th order method. The influence of dynamic characteristics of the sloshing tank on the fluid flow is discussed. The numerical method is also applied for the simulation of the wall generated wave in the tank.

  • PDF

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank System with Damping Safety Structures (댐핑안전 구조물을 고려한 완전밀페식 LNG 저장탱크 시스템의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the finite element analysis on the strength safety of a full containment LNG storage tank system with damping safety structures. For the FEM analysis of the inner tank, the combined loads in which are related to a hydrostatic pressure, a cryogenic temperature load, BOG pressure, LNG weight, and a sinking force at the comer of the inner tank have been applied to the inner tank structure. The FEM computed results show that the conventional inner tank is safe for the given combined loads, but the damping safety structure such as compressive springs may be more useful structures to increase the safety of the tank system. The increased stiffness and the appropriate position of the springs are very important design parameters for increasing the damping strength safety of the tank system.

  • PDF

A Study on Improvement of Structural Strength Evaluation Methods for Tank of Tank Car used for Carrying Hazard Materials (위험물 수송 철도차량 탱크의 구조강도 평가방법 개선연구)

  • Lim, Chung-Hwan;Goo, Byung-Choon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.239-245
    • /
    • 2008
  • In this study, we researched about characteristics of many kinds of tank cars for carrying hazard materials and performed structural strength evaluation using finite element analysis for tank of asphalt tank car to suggest the efficient analysis method that can develop accuracy regarding to characteristics of tank cars. For this, we analyzed the asphalt tank refer to JIS E 7102 (Design Method for Tanks of Tank Cars). As results, we could show that the maximum stress is applied at the area supported by saddle and the maximum stress is under a criterion suggested from JIS E 7102. Therefore we verified that this asphalt tank car had enough structural strength.

A Study on the Strength Safety Analysis of a Full Containment LNG Storage Tank Due to a Wind Pressure (완전밀폐식 LNG 저장탱크에 작용하는 풍압에 의한 강도안전 해석에 관한 연구)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • Using the finite element analysis, this paper presents the strength safety of a side wall of an outer tank and a roof structures in a full containment LNG storage tank system. The outer tank structure in which is constructed with a prestressed concrete is forced by internal hydrostatic and hydrodynamic pressures of a leaked LNG and an external wind pressure including a typhoon one. The FEM computed results show that the ring beam between a side wall of an outer tank and a roof structure supports most of the internal and the external loads. This means that the design point of the outer tank system is a ring beam structure and the other one is a center part of the roof structure. In this FE analysis model of a full containment LNG tank system, the outer tank and the roof structures are safe for the given combined loads such as an internal leaked LNG pressure and an external typhoon pressure.

  • PDF

Structural Effect Evaluation of an Apartment Building Due to the Water Tank under Earthquake Load (지진발생시 아파트 옥탑층 물탱크의 구조적 영향평가)

  • 정은호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.29-40
    • /
    • 1999
  • High-rise building for dwelling has many factors to be considered in structural aspects. In particular, the higher the building, the bigger the lateral loads such as wind and earthquake due to its dynamic characteristics. Unlike the wind load, the earthquake load, even if the shape of the structures are similar, depends on structural characteristics and it is difficult to predict. For an apartment building, the water tank in the penthouse, due to its heavy weight, changes the behavior of a building when the earthquake occurs. The purpose of this study is to determine how the water tank affects the behavior of an apartment building when earthquake occurs. Dynamic analysis was accomplished on two cases - 1) water tank is considered 2) water tank is not considered - to understand how it affects the behavior of a high-rise apartment building. Structural design was accomplished to understand how the water tank and the peak acceleration affects each structural member. The effect of the water tank on the response of structure was large. Elsewhere the water tank has no effect on the design of a strutural member. However some structural members were affected when the peak acceleration of an earthquake is 0.4g.

  • PDF

Earthquake Response Analysis of Cylindrical Liquid-Storage Tanks Considering Nonlinear Fluid-Structure Soil Interactions (비선형 유체-구조물-지반 상호작용 고려한 원통형 액체저장탱크의 지진응답해석)

  • Jin Ho Lee;Jeong-Rae Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.133-141
    • /
    • 2024
  • Considering fluid-structure-soil interactions, a finite-element model for a liquid-storage tank is presented and the nonlinear earthquake response analysis is formulated. The tank structure is modeled considering shell elements with geometric and material nonlinearities. The fluid is represented by acoustic elements and combined with the structure using interface elements. To consider the soil-structure interactions, the near- and far-field regions of soil are modeled with solid elements and perfectly matched discrete layers, respectively. This approach is applied to the seismic fragility analysis of a 200,000 kL liquid-storage tank. The fragility curve is observed to be influenced by the amplification and filtering of rock outcrop motions at the site when the soil-structure interactions are considered.

Design Safety Analysis of $9\%$ Nickel Steel Structure in Inner Tank Storage System (내부탱크 저장 시스템에서 $9\%$ 니켈강재 구조물의 설계 안전성에 관한 연구)

  • Kim Chung Kyun;Choi Dong Yul
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.49-55
    • /
    • 2001
  • This paper presents the design safety analysis of the inner tank structure, which is manufactured by 9 percent nickel steel sheets in the full containment type LNG storage tank. The FEM computed results indicate that top girder and several stiffener rings of the inner tank play an important role for controlling the deformation and stress intensity of the inner tank structure. The hydrostatic pressure due to cryogenic fluids gave more influential to the deformation of the inner tank wall compared with that of a cryogenic temperature of $-162^{\circ}C$. But, the deformation and stress of the inner tank. which is produced by the buckling loads, are very small because the external load is not applied to the top of the inner tank. This indicates the role of top girder and stiffener rings of the inner tank model is not important in full containment LNG storage tank.

  • PDF