• Title/Summary/Keyword: 탱크 운전

Search Result 75, Processing Time 0.022 seconds

The Construction and Operation of LNG Receiving Terminal (LNG 인수기지 건설과 운영)

  • 김영철
    • Journal of the KSME
    • /
    • v.34 no.11
    • /
    • pp.836-844
    • /
    • 1994
  • LNG 인수기지 건설에 있어 주요 기자재는 외국에서 구입하고 이들 설비의 설치 및 시운전은 제작사 기술진의 감리하에 이루어졌다. 그간 천연가스 사업의 계속적인 발전으로 가스설비의 국산화가 상당히 이루어졌고, 국내 건설기술의 향상으로 외국인 감리자의 수요가 많이 감소하 였으나 현재도 LNG 저장탱크의 건설감리는 외국인의 책임하에 수행되고 있다. LNG 설비의 운 전은 완전한 기술자립이 이루어졌으며, 설비의 점검\ulcorner보수 또한 우리 기술진이 수행하나, 핵심 부품의 고장이 발생한 경우는 제작사의 전문가가 보수를 시행하는 경우가 많다. 이에 대한 대 책으로서 설비의 운전\ulcorner유지\ulcorner보수 기술을 더욱 축적하여 설비의 안정적 운영을 확고히 하고, 설비의 안전을 향상시키는 기술개발을 계속 추구하여야 할 것이다.

  • PDF

A study on 200W PEMFC Operating Characteristics by Flux Change (유량변화에 따른 200W급 PEMFC 운전특성 연구)

  • Sun, Kyung-Chul;Park, Se-Joon;Choi, Jeong-Sik;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.215-218
    • /
    • 2009
  • 본 논문에서는 유량변화에 따른 200W급 PEMFC 운전특성을 연구하였다. 연료공급은 수소탱크와 공기공급용 컴프레셔를 이용하였고 유량은 MFC를 이용하여 제어하였다. 연료의 가습은 Bubbling type을 사용하였고 유량변화에 대한 반응차이를 크게 보기 위해 Back pressure 레귤레이터를 제거함으로써 확연한 차이를 얻을 수 있었다.

  • PDF

Development of Tank Lorry Monitoring System for Safety Using Intelligent Computing Device (지능형 단말기를 사용한 탱크로리 운행 안전 모니터링 시스템 개발)

  • Lee, Choon-Young;Bae, Ki-Man;Park, Geun-Young;Lee, Dong-Jin;Lim, Jeong-Sik;Lee, Sang-Ryong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.42-47
    • /
    • 2008
  • It is important for national safety that tank lorry or bulk lorry which is carrying toxic gas or explosive materials should be monitored during the maneuvering from starting point to destination as well as vehicle or tank status. Therefore, we propose a safety monitoring system for tank lorry to check driving condition and the vehicle status. We studied the integration of central control system with in-vehicle computer system connected with various sensors for monitoring through a communication network.

  • PDF

Analysis on Heat Loss of Hybrid Safety Injection Tank to Predict Pressure Equalizing Time (혼합형 안전주입탱크의 압력평형 예측을 위한 열손실 평가)

  • Kim, Myoung Jun;Ryu, Sung Uk;Kim, Jae Min;Park, Hyun-Sik;Yi, Sung-Jae
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.71-77
    • /
    • 2017
  • In the event of loss of coolant accident (LOCA) and station black out (SBO) in the primary system of a nuclear reactor, the coolant water should be injected to reactor coolant system (RCS) without any intervention of operators or active components. To satisfy the requirements, hybrid safety injection tank (Hybrid SIT) was suggested by Korea Atomic Energy Research Institute (KAERI). The pressure equalizing time of Hybrid SIT is an important parameter to determine the timing of coolant injection. To predict the pressure equalizing time of the Hybrid SIT, a separate effect test facility was constructed and sensitivity tests were conducted in various conditions. The main parameter determining the pressure equalizing time was obtained from separate effect test (SET) results. The wall of condensation on the inner wall of SIT and direct contact condensation on the water surface affected to the pressure equalizing time very much. In this study, the effect of each condensation phenomena on pressure equalizing time was quantitatively analyzed from results of SET and a prediction method of pressure equalizing time was proposed.

Analysis of Cool-down Operation of Liquid Hydrogen Tank (액체수소 저장탱크의 냉각 방법 분석)

  • HWALONG YOU;BYUNGIL CHOI;KYUHYUNG DO;TAEHOON KIM;CHANGHYUN KIM;MINCHANG KIM;YONGSHIK HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.641-649
    • /
    • 2023
  • This study analyzes the cool-down process of liquid hydrogen storage tanks, which have advantages in terms of large-capacity transfer, storage, and utilization as hydrogen demand increases. A hydrogen liquefaction plant is selected for analysis and an efficient tank cooling method is sought by comparing the time required for the cool-down process with the gas consumption in connection with the gassing-up process required for the operation of the liquid hydrogen storage tank. The results of this study can be referred to in the operation process after the initial start-up and maintenance of the hydrogen liquefaction plant.

An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 유동분사기 성능에 대한 실험연구)

  • Ryu, Sung Uk;Bae, Hwang;Yang, Jin Hwa;Jeon, Byong Guk;Yun, Eun Koo;Kim, Jaemin;Bang, Yoon Gon;Kim, Myung Joon;Yi, Sung-Jae;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.124-132
    • /
    • 2016
  • In order to estimate the effect of flow distributors connected to an upper nozzle of CMT(Core Makeup Tank) on the thermal-hydraulic characteristics in the tank, a simplified 2 inch Small Break Loss of Coolant Accident(SBLOCA) was simulated by skipping the decay power and Passive Residual Heat Removal System(PRHRS) actuation. The CMT is a part of safety injection systems in the SMART (System Integrated Modular Advanced Reactor). Each test was performed with reliable boundary conditions. It means that the pressure distribution is provided with repeatable and reproducible behavior during SBLOCA simulations. The maximum flow rates were achieved at around 350 seconds after the initial opening of the isolation valve installed in CMT. After a short period of decreased flow rate, it attained a steady injection flow rate after about 1,250 seconds. This unstable injection period of the CMT coolant is due to the condensation of steam injected into the upper part of CMT. The steady injection flow rate was about 8.4% higher with B-type distributor than that with A-type distributor. The gravity injection during hot condition tests were in good agreement with that during cold condition tests except for the early stages.

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study (가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

하나로 냉중성자원 헬륨 이중배관의 특성

  • Choe, Ho-Yeong;Kim, Min-Su;Son, U-Jeong;Lee, Mun;Han, Jae-Sam;Jo, Seong-Hwan;Heo, Sun-Ok;An, Guk-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.361-361
    • /
    • 2011
  • 하나로 냉중성자원(CNS: Cold Neutron Source)은 원자로 수조내 반사체 탱크에 위치한 수직 조사공에 설치되어 하나로 노심에서 발생하는 열중성자를 감속재인 액체 수소층을 통과시켜 냉중성자를 생산한다. 생성된 냉중성자는 유도관을 통하여 냉중성자 산란장치에 공급되어 이용 연구에 활용된다. 감속재로 사용되는 수소는 헬륨냉동계통의 운전에 따라 수소가 수조내기기 집합체(IPA: In Pool Assembly) 내로 이동되어 액화되어지므로, 극저온의 헬륨가스의 흐름이 중요하다. 헬륨냉동기에 의해 만들어진 극저온인 헬륨은 IPA 내의 수소와 열교환을 하기 위해서 배관을 통해 이동되며, 열손실없이 전달하기 위하여 헬륨 배관은 진공층이 형성된 이중배관으로 설계되어 있다. 헬륨 이중배관은 공급 및 회수 배관으로 구성되어 있으며, 헬륨 배관의 외관에 진공층을 20개의 구간으로 나누어 제작 및 설치되었으며, 각각의 진공도를 유지하고 있다. 이 논문에서는 하나로 냉중성자원 헬륨 이중배관의 특성과 헬륨냉동계통의 운전 및 정지시 온도 변화에 따른 이중배관 진공도의 변화를 분석하였다.

  • PDF

Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구)

  • Ryu, Sung Uk;Bae, Hwang;Ryu, Hyo Bong;Byun, Sun Joon;Kim, Woo Shik;Shin, Yong-Cheol;Yi, Sung-Jae;Park, Hyun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • An experimental study of the thermal-hydraulic characteristics of passive safety systems (PSSs) was conducted using a system-integrated modular advanced reactor-integral test loop (SMART-ITL). The present passive safety injection system for the SMART-ITL consists of one train with the core makeup tank (CMT), the safety injection tank, and the automatic depressurization system. The objective of this study is to investigate the injection effect of the PSS on the small-break loss-of-coolant accident (SBLOCA) scenario for a 0.4 inch line break in the safety-injection system (SIS). The steady-state condition was maintained for 746 seconds before the break. When the major parameters of the target value and test results were compared, most of the thermal-hydraulic parameters agreed closely with each other. The water level of the reactor pressure vessel (RPV) was maintained higher than that of the fuel assembly plate during the transient, for the present CMT and safety injection tank (SIT) flow rate conditions. It can be seen that the capability of an emergency core cooling system is sufficient during the transient with SMART passive SISs.