• Title/Summary/Keyword: 탠덤 용접

Search Result 2, Processing Time 0.017 seconds

A Study on the Performance Evaluation of the Welded Joint to Maintain the Quality of the Tandem GMAW (탠덤 GMAW의 품질확보를 위한 용접이음부위의 성능평가에 대한 연구)

  • Park, Cheol-Kyun;Lee, Jong Pyo;Park, Min Ho;Kim, Ill Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.230-237
    • /
    • 2015
  • To improve productivity and improve the welding process, we have studied the automated system of the weld by applying a tandem welding. Then, the speed of the welding process is improved, production of industries is increasing. Productivity of the industrial sector has increased the application of tandem welding for automated system of welding. But quality assurance for the product take place welding defects in the welding process because the speed of the process is increased. Definitive research solutions an dit's actuality, however, there is insufficient. Accordingly, it is a situation that the performance of the weld to ensure quality of the weld is required urgently after the welding process. Comparing and analyzing the results of passing each experiment of the two-electrode welding and the welding electrode1, a study attempted to quality assurance of the welded joint portion.

A Study on the Optimum Tandem Welding Torch Distance for the Reduction of CO2 Shielding Gas Consumption (Tandem 용접 CO2 보호가스 사용량 감소를 위한 최적 토치 극간거리에 대한 연구)

  • Lee, Jun-Yong;Kim, Ill-Soo;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.294-301
    • /
    • 2012
  • Shipbuilding industry has used a lot of $CO_2$ gas as a shielding gas for arc welding and thus, development of welding equipment which can reduce the amount of $CO_2$ gas is requested widely. Therefore, this study is focused on the examination of optimum welding torch distance of Tandem welding system as a fundamental study for the optimum shape design of torch nozzle. $CO_2$ shielding gas distribution and welding bead shape formation by the torch distance are examined. Results show that according to the torch distance variation, most effective shielding gas layer can be formed and quantitative determination of the optimum torch distance can result in the reduction of $CO_2$ shielding gas consumption.