• Title/Summary/Keyword: 태양 일사

Search Result 464, Processing Time 0.022 seconds

Assessment of Site Environmental Factors on the Structure of Forest Vegetation in Naejang-san National Park Using Canonical Correlation Analysis (정준상관분석을 통한 내장산국립공원 산림식생구조의 입지환경 평가)

  • Kim, Tae-Geun;Cho, Young-Hwan;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.561-569
    • /
    • 2013
  • This study examines locational environment factors that may affect the vegetation structure in the forests of Naejang National Park. To that end, we selected LAI (Leaf Area Index), diameter at breast height, and tree height as structural variables as well as altitude above sea level, gradient, slope direction, soil moisture, topographic location, and amount of solar radiation as locational environment factors, using the method of canonical correlation analysis in order to find out correlation between them. As to the simple correlation between the locational environment factors and structural variables, the correlation coefficient was relatively low (0.6). The values of LAI, measured along the ridge with higher altitudes, decreased as the soil moisture and solar radiation increased. However, LAI increased as the gradient increased and the slope direction faced the north (farther from the east). In respect of the diameter at breast height, the diameter decreased as the altitude and gradient increased. But the diameter increased as the moisture and solar radiation increased. The tree height decreased as the moisture increased and the site was closer to the ridge. These various correlations show a variety of locational environment factors in the national park, implying that the structural variables are affected by complex locational environment factors. This study conducted a canonical correlation analysis on locational environment factors which may affect the vegetation structure, and the result showed that LAI increased and tree height & diameter at breast height decreased as the solar radiation & moisture decreased and altitude increased. Although more factors that may affect vegetation structure (e.g. climate) should be taken into account, this study is significant in that the vegetation structure, which can adapt to more unfavorable conditions in terms of solar radiation, moisture, and higher altitudes, could be inferred in a statistical way. The results of this study, especially the locational environment factors based on DEM, can be used for assessing diversity of vegetation structure in a forest and for monitoring the structure in a national park on a regular basis so as to establish more effective maintenance plans of a park.

Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System (선형 프레넬 반사판 시스템의 집광 특성에 대한 수치해석 연구)

  • Lee, Hyun Jin;Kim, Jong Kyu;Lee, Sang Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.927-934
    • /
    • 2015
  • In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of $13.0{\sim}14.6kW/m^2$. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.

Application Performances of the Simplified Solar Collectors and for the Drying of Red Pepper (간이(簡易) 태양열(太陽熱) 집열기(集熱器)의 유형별(類型別) 분석(分析) 및 고추건조(乾燥)에의 이용(利用))

  • Choi, Boo-Dol;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.479-484
    • /
    • 1986
  • Two different types of solar collector for farm dryer- the flatplate type and the modified tubular type-were constructed and analyzed on their performances. The transparent plastic film, black painted galvanized iron sheet and black vinyl film were used for the cover and absorber of the flat-plate types. The simplified tubular type was constructed with transparent films for the cover and black vinyl films for the absorber Two elliptical iron rings were used to form a tubular shape through which air could pass. No remarkable differences were found in thermal efficiences between the absorbers made with galvanized iron sheet and black vinyl film. The average thermal efficiencies of the solar collectors were 42.8%(max.48.2%, min.38.2%) for flat plate type and 22.971 (max. 25.4%, min. 14.8%)) for tubular one. The empirical equations were proved to be applicable to the prediction of temperature elevation. The tubular solar heat collector was successfully applied to red peppers drying as a practical farm dryer. The drying rate was almost doubled compared to a conventional sun drying.

  • PDF

The Development of the Simple SHGC Calculation Method in Case of a Exterior Venetian Blind Using the Simulation (시뮬레이션을 이용한 외부 베네시안 블라인드의 약식 SHGC 계산법 개발)

  • Eom, Jae-Yong;Lee, Chung-Kook;Jang, Weol-Sang;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.73-83
    • /
    • 2015
  • When it comes to these buildings for business use, cooling load during summertime was reported to have great importance which, as a result, impressively increased interest in Solar Heat Gain Coefficient (SHGC). Such SHGC is considered to be lowered with the help of colors and functions of glass itself, internal shading devices, insulation films and others but basically, these external shading devices for initial blocking that would not allow solar heat to come in from outside the buildings are determined to be most effective. Of many different external shading devices, this thesis conducted an analysis on Exterior Venetian Blind. As for vertical shading devices, previous researches already calculated SHGC conveniently using concepts of sky-opening ratios. However in terms of the Venetian Blind, such correlation is not possibly applied. In light of that, in order to extract a valid correlation, this study first introduced a concept called shape factor, which would use the breadth and a space of a shade, before carrying out the analysis. As a consequence, the concept helped this study to find a very similar correlation. Results of the analysis are summarized as follows. (1) Regarding SHGC depending on the surface reflectance of a shade, an average of 2% error is observed and yet, the figure can always be ignored when it comes to a simple calculation. (2) As for SHGC of each bearing, this study noticed deviations of 4% or less and in the end, it is confirmed that extraction can be achieved with no more than one correlation formula. (3) When only the shape factor and nothing else is used for finding a correlation formula, the formula with a deviation of approximately 5% or less is what one would expect. (4) Since the study observed slight differences in bearings depending on ranges of the shape factors, it needed to extract a weighted value of each bearing, and learned that the smaller the shape factor, the wider the range of a weighted value. The study now suggests that a follow-up research to extract a simple calculation formula by dealing with all these various inclined angles of shade, solar radiation conditions of each region (the ratio of diffuse radiation to direct radiation and others) as well as seasonal features should be carried out.

Performance Analysis of MPPT Techniques Based on Fuzzy Logic and P&O Algorithm in Actual Weather Environment (실제 날씨 환경에서 퍼지로직과 P&O 제어방식의 MPPT 동작 성능 분석)

  • Eom, Hyun-Sang;Yang, Hye-Ji;An, Hyun-Jun;Kwon, Youngsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.291-298
    • /
    • 2020
  • The power generation of a PV system changes according to the weather variables, such as solar radiation and temperature. In particular, the output characteristics of photovoltaic systems, which are sensitive to changes in solar radiation, can be produced effectively and reliably in various weather conditions through MPPT (Maximum Power Point Tracking) control. This paper proposes a fuzzy-based MPPT control method to improve the efficiency and stability of the power production from a solar system. To verify the performance of the proposed method, under the same weather environment, the efficiency and stability of the newly proposed fuzzy logic were compared and evaluated empirically with P&O (Perturb and Observe), a representative algorithm of MPPT control. Furthermore, the circuits designed to improve the reliability and reliability of the hardware were manufactured from Printed Circuit Boards (PCB) to conduct experiments. Based on the results of the experiment during a certain period, the fuzzy-based MPPT proposed in this paper improved the efficiency by more than 4.4% compared to the MPPT based on the existing P&O algorithm and decreased the fluctuation width by more than 39.7% at the maximum power point.

Irradiation and Power Analysis According to Seasons (태양광 시스템의 계절별 일사량과 전력량)

  • Li, Ying;Jung, Jong-Chul;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.220-220
    • /
    • 2009
  • In case of favourable irradiation conditions, the ratio of irradiation to the total irradiation went up and then the irradiation increased in the area with high angle of inclination. The study showed that on a clear day with the irradiation of more than $800[W/m^2]$, the pattern of alternating current power change in the fixed system was similar with that in the single-axis tracker. On the contrary, in case of unfavourable irradiation conditions, the ratio of diffuse irradiation to the total irradiation went up and then the horizontal irradiation increased. In the demo system, the fixed system, the single-axis tracker and the dual-axis tracker all had low generation power and similar generation pattern with each other. The study showed the generation power varied with the irradiation in the fixed system, while in the single-axis tracker and the dual-axis tracker, the amount of the generation power variation was much more than the irradiation variation. The demo system was operated from 11:00 AM to 2:00 PM for generating power, during which time, 46[%] to 56[%] of the total generation power was produced. In this study. the generation power was increased by 147[%] in the fixed system, by 136[%] in the single-axis tracker, and by 164[%] in the dual-axis tracker, and the pattern of generation power was similar with the generation power variation in the situation where the irradiation increased by 140[%] in the spring with plenty of insolation. The alternating current power was more sensitive to variation of the irradiation than to that of the surface temperature of a module. The variation of the irradiation had a more positive effect on the generation power than the type of array.

  • PDF

Analysis of Irradiation and Power per Each Months of Photovoltaic Systems (태양광 발전시스템의 월별 일사량과 전력량 분석)

  • Shin, Hyun-Mahn;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.40-42
    • /
    • 2009
  • The economic growth and highly industrialized society have increased the demand for electricity power. As a result, concerns were focused on the energy resource scarcity and global warming. That is why the photovoltaic generation system to address these concerns has been in the spotlight recently. In this thesis, a utility interactive photovoltaic generation system was operated experimentally for the purpose of promoting the spread of the photovoltaic generation system in the future. Also, the effect of the type of array structure has on the performance of the photovoltaic generation system was evaluated quantitatively and by analyzing the comprehensive operating characteristics, the following results were obtained. In the demo system operated for a year, the average irradiation was measured to be 455,076 $[W/m^2]$ and the maximum irradiation to be 626,622 $[W/m^2]$ in May, up 171,546 $[W/m^2]$ or 38[%] compared with the average irradiation. The minimum irradiation was observed to be 294,022$[W/m^2]$ in December, down 161,054 $[W/m^2]$ or 35[%] compared with the average irradiation. The generation power in situation where there is plenty of irradiation was more than the average one, and the generation power in the fixed system amounted to 32[%], the single-axis tracker to 37[%], and the dual-axis tracker to 39[%]. The generation power in situation where there is little irradiation was less than the average one, and the generation power in the dual-axis tracker amounted to 41[%], the single-axis tracker to 40[%], and the fixed system to 36[%].

  • PDF

Analysis of Irradiation and Power per Each Seasons of Photovoltaic Systems (태양광 발전시스템의 계절별 일사량과 전력량 분석)

  • Kim, Seok-Gon;Hwang, Jun-Won;Lee, Ying;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.43-45
    • /
    • 2009
  • In case of favourable irradiation conditions, the ratio of irradiation to the total irradiation went up and then the irradiation increased in the area with high angle of inclination. The study showed that on a clear day with the irradiation of more than 80$[W/m^2]$, the pattern of alternating current power change in the fixed system was similar with that in the single-axis tracker. On the contrary, in case of unfavourable irradiation conditions, the ratio of diffuse irradiation to the total irradiation went up and then the horizontal irradiation increased. In the demo system, the fixed system, the single-axis tracker and the dual-axis tracker all had low generation power and similar generation pattern with each other. The study showed the generation power varied with the irradiation in the fixed system, while in the single-axis tracker and the dual-axis tracker, the amount of the generation Power variation was much more than the irradiation variation. The demo system was operated from 11:00 AM to 2:00 PM for generating power, during which time, 46[%] to 56[%] of the total generation power was produced. In this study, the generation power was increased by 147[%] in the fixed system, by 136[%] in the single-axis tracker, and by 164[%] in the dual-axis tracker, and the pattern of generation power was similar with the generation power variation in the situation where the irradiation increased by 140[%] in the spring with plenty of insolation. The alternating current power was more sensitive to variation of the irradiation than to that of the surface temperature of a module. The variation of the irradiation had a more positive effect on the generation power than the type of array.

  • PDF

Numerical analysis of solar pond with insulation layer (단열층을 가지는 솔라 폰드의 수치해석)

  • Yu, Jik-Su;Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.264-269
    • /
    • 2016
  • This paper reports a fundamental study of temperature characteristics of a solar pond with an insulation layer. Further, these characteristics were compared with those of a solar pond without the insulation layer. The governing equation was discretized via finite difference method. The governing equations are two-dimensional unsteady-state second-order partial differential equations. The conclusions of the study are as follows: 1) If the depth of the solar pond was increased, the desired effect of increase in temperature was not produced because the amount of solar insolation received by the bottom of the solar pond decreased. 2) As the temperature of the soil during winter is higher than the temperature of the water in a solar pond, heat was transferred from the soil to the solar pond. 3) For the case of the solar pond with insulation layer, it was estimated that the dependence rate of solar energy was 83.3% and that of the boiler was 16.7%.

A Study of Parametric Effects on the Thermal Performance of Flat-Plate Liquid-Heating Solar Collectors (평판형 액체식 집열기 의 각종 변수 가 집열기 의 열성능 에 미치는 영향)

  • 전문헌;윤석범;추교명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.145-153
    • /
    • 1984
  • In the present work, a computer simulation is performed employing Hottel-Whillier-Bliss model for thermal performance of solar collectors. The major collector parameters examined in the computer simulation are: number of transparent glass covers(N), thermal emissivity of the absorbing plate surface (.epsilon.$_{P}$), absorptivity of absorber plate (.alpha.$_{p}$), flow rate per unit area of collector (G), $L_{b}$ / $k_{b}$ of insulation material, tilt angle of collector (S), and solar insolation(I). By varying numerical values of the major collector parameters around their typical values, the corresponding variations in thermal efficiency curves are examined. In addition, an experimental investigation has been carried out with a slightly modified KAIST collector test loop under a real sun condition in order to compare with the simulation results, examine the applicability of the mathematical model of the collector thermal performance, and study the effect of variation of flow rate (G) on thermal efficiency and the range of optimum flow rate.e.